
The Journal of Systems and Software 112 (2016) 137–155

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Consistent merging of model versions

Hoa Khanh Dam a,∗, Alexander Egyed b, Michael Winikoff c, Alexander Reder b,
Roberto E. Lopez-Herrejon b

a University of Wollongong, Australia
b Johannes Kepler University, Austria
c University of Otago, New Zealand

a r t i c l e i n f o

Article history:

Received 31 July 2014

Revised 23 April 2015

Accepted 17 June 2015

Available online 27 June 2015

Keywords:

Model merging

Inconsistency management

Model versioning

a b s t r a c t

While many engineering tasks can, and should be, manageable independently, it does place a great burden

on explicit collaboration needs—including the need for frequent and incremental merging of artifacts that

software engineers manipulate using these tools. State-of-the-art merging techniques are often limited to

textual artifacts (e.g., source code) and they are unable to discover and resolve complex merging issues be-

yond simple conflicts. This work focuses on the merging of models where we consider not only conflicts

but also arbitrary syntactic and semantic consistency issues. Consistent artifacts are merged fully automati-

cally and only inconsistent/conflicting artifacts are brought to the users’ attention, together with a systematic

proposal of how to resolve them. Our approach is neutral with regard to who made the changes and hence

reduces the bias caused by any individual engineer’s limited point of view. Our approach also applies to ar-

bitrary design or models, provided that they follow a well-defined metamodel with explicit constraints—the

norm nowadays. The extensive empirical evaluation suggests that our approach scales to practical settings.

© 2015 Elsevier Inc. All rights reserved.

1

u

i

e

s

s

t

s

b

a

m

F

p

t

H

s

s

m

r

(

w

e

t

t

a

f

e

a

s

e

d

e

w

m

h

a

a

h

0

. Introduction

Models have become central artifacts which are created and

sed by software engineers. In a collaborative environment, which

s the dominant form of today’s software development, software

ngineers concurrently and independently work on models which

ubsequently need to be merged. A basic scenario is where multiple

oftware engineers work independently on a single model and, since

hey do so separately on their respective workstations, different ver-

ions of that model may exist. These different versions then need to

e merged periodically to support collaboration and error detection

mong these engineers. In another scenario, multiple versions of a

odel may exist due to the concurrent evolution of product variants.

or example, a company may develop multiple related software

roducts, each undergoing constant evolution, to meet their respec-

ive, ever-changing user requirements and environmental changes.

ere, merging may be desired to consolidate different variants or

imply to facilitate reuse among the variants. There are many more

uch scenarios where software engineers find themselves confronted
∗ Corresponding author. Tel.: +61 242214875.

E-mail addresses: hoa@uow.edu.au (H.K. Dam), alexander.egyed@jku.at (A. Egyed),

ichael.winikoff@otago.ac.nz (M. Winikoff), alexander.reder@jku.at (A. Reder),

oberto.lopez@jku.at (R.E. Lopez-Herrejon).

URL: http://www.uow.edu.au/˜hoa/ (H.K. Dam), http://www.alexander-egyed.com

A. Egyed), http://infosci.otago.ac.nz/michael-winikoff (M. Winikoff)

m

o

m

i

ttp://dx.doi.org/10.1016/j.jss.2015.06.044

164-1212/© 2015 Elsevier Inc. All rights reserved.
ith concurrently evolving versions of architectural models (Chen

t al., 2004). All these scenarios pose the challenging need to merge

hese different versions of models.

However, since models are complex, rich data structures of in-

erconnected elements, traditional text-based versioning techniques

nd tools such as Git, Subversion, and CVS have not been success-

ully applied to model versioning (Brosch et al., 2012b). Without ad-

quate tool support, model merging may result in a syntactically

nd/or semantically inconsistent merged version. Therefore, incon-

istency management is of vital importance in model merging. How-

ver, state-of-the-art model merging techniques have only focused on

etecting inconsistencies in merging versions of models (e.g. Brosch

t al., 2012a; Sabetzadeh et al., 2008) and there has been very little

ork in resolving such inconsistencies having arisen during model

erging.

This paper contributes a novel approach to model merging which

elps software engineers in combining versions of models that

re created and maintained separately. Our approach considers

rbitrary, user-definable consistency constraints and merges the

odel versions fully automatically if they are consistent and free

f conflicts.1 The software engineers are notified only if there are
1 Two models are in conflict if a model element is changed differently in each of the

odels, for instance if it is modified in one and deleted in another. The models are

nconsistent if desired constraints do not hold in the merged model.

http://dx.doi.org/10.1016/j.jss.2015.06.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.044&domain=pdf
mailto:hoa@uow.edu.au
mailto:alexander.egyed@jku.at
mailto:michael.winikoff@otago.ac.nz
mailto:alexander.reder@jku.at
mailto:roberto.lopez@jku.at
http://www.uow.edu.au/~hoa/
http://www.alexander-egyed.com
http://infosci.otago.ac.nz/michael-winikoff
http://dx.doi.org/10.1016/j.jss.2015.06.044


138 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

Table 1

Example of consistency constraints.

C1 The name of a message must match an operation in the receiver’s class

(the operation may be inherited from a generalization).

C2 The sequence of incoming messages to an object in a sequence diagram

must match the allowed events in the state machine diagram

describing the behavior of the object’s class.

C3 Inheritance cannot include cycles.a

a Consistency constraints for UML are typically expressed in the standard Object

Constraint Language (OCL). For instance, constraint C3 is expressed in OCL as not

self.allParents() → includes(self) where self is the context element, i.e. the UML Class.

p

m

e

b

a

i

s

t

t

b

o

w

i

i

t

a

p

i

c

2

w

d

I

(

o

a

a

w

i

(

b

c

c

b

t

s

t

q

t

s

C

o

t

c

m

v

g

h

conflicts or inconsistencies. However, since inconsistencies are more

complex problems than simple conflicts, solving them becomes

harder. Repairing an inconsistency can have the side effect of creat-

ing a different inconsistency (“cascading”). Furthermore, the number

of alternative repairs increases exponentially with the complexity

of the consistency rule and the number of elements accessed (Reder

and Egyed, 2012). Previous work has shown that abstract repairs,

which merely identify the model elements that require repairing,

are reasonably localized and scalable to compute. On the other hand,

concrete repairs, which identify all possible ways of repairing a given

model element, are often infinitely large. For example, even if a repair

merely requires the change of a single state transition action, we must

consider that there are infinitely many ways of writing such actions.

And, unfortunately, effective model merging needs to explore this

apparently infinite space of concrete repairs for any inconsistency

caused—an apparently computationally infeasible endeavor.

This paper is a substantially extended and revised version of Dam

et al. (2014) in a number of aspects. We have improved and extended

our merging algorithm to include pruning (in the search) and cater-

ing for conflicting actions (Section 5). In addition, the new merging

algorithm utilizes the scope of a consistency constraint (Egyed, 2006)

in deriving candidate merged models. This approach offers an alter-

native to using the repair generation as in the previous version (Dam

et al., 2014). Another significant extension is the formal proof which

establishes the correctness of our approach (Section 6.1). The evalua-

tion was also extended to accommodate the new merging algorithm.

Sections 1 and 2 are also extended to better motivate and articulate

the model merging problem, while Section 7 is extended to provide a

more comprehensive review of the literature.

In this paper, we argue that the space of repairs for resolving in-

consistencies in model merging is constrained by the changes made

to the original model and thus it is practically feasible to explore

them—not only in considering concrete repairs (as opposed to ab-

stract repairs) but also in fixing a number of inconsistencies at

once (as opposed to individual inconsistencies). If there are conflicts

and/or inconsistencies among the artifacts to be merged, then clearly

a compromise between those artifacts is necessary. A repair in this

sense reflects a compromise. The constrained search space implies

that there are limited resolution opportunities, and our approach em-

ploys a fast, automated search technique to quickly gauge whether a

compromise is possible to solve the merging problem by taking some

(but not all) of the engineers’ changes. It is useful to automate this ini-

tial compromise to avoid bias. However, since merging may involve

tradeoffs where human judgment and communication are required,

our approach provides the software engineers with all feasible alter-

native compromises in order to help them make informed, consistent

merging decisions. The benefits of our approach are:

1. Artifacts are merged fully automatically if they are consistent and

conflict-free.

2. Inconsistencies and/or conflicts caused during the merging are in-

stantly recognized and reported to the engineer.

3. Even with inconsistencies, parts of artifacts are still merged auto-

matically if they are not involved in the inconsistencies.

4. Unbiased compromises for resolving the inconsistencies among

the engineers’ artifacts are computed automatically, to help the

engineers quickly assess the problem.

We believe that our approach is applicable to arbitrary modeling

languages and software engineering artifacts, as long as they follow

a well-defined metamodel with explicit constraints. Since today the

standard Unified Modeling Language (UML) is predominantly used

in the industry for representing software models (Malavolta et al.,

2013), we illustrate and validate our work mostly in the context of

UML models. Architectural description languages such as Architec-

ture Analysis and Design Language (AADL) (Feiler et al., 2006) have a

metamodel, and constraints such as “A process can only be a subcom-
onent of a system component” can be expressed upon the meta-

odel. Temporal constraints modeling component interaction as

xpressed in the AADL’s behavior annex may need special treatments

ut our technique still can apply in general. We demonstrate that our

pproach is correct and an empirical analysis of large, third-party,

ndustrial software models indicates its computational efficiency and

calability in practice. We do not presume the original model (or

he versions) to be fully consistent, nor is there an expectation that

he final, merged model must be consistent. This approach can thus

e used at any level of maturity of the model – and hence at any stage

f the process – to support the collaborative merging of artifacts.

The structure of our paper is as follows. In the next section, we

ill describe a typical scenario in which the key limitations of exist-

ng model merging techniques are highlighted. We then discuss how

nconsistencies occur in merging models in Section 3. Section 4 serves

o describe an architectural overview of our approach and its details

re provided in Section 5. We then prove the correctness of our ap-

roach and report a number of experiments to validate its scalability

n Section 6. Finally, we discuss related work in Section 7 before we

onclude and outline future work in Section 8.

. Illustrative example

We describe here a typical example of classical model merging

here two software engineers, Alice and Bob, concurrently work on

eveloping a model for a software controlling a washing machine.

n this example, Alice and Bob use the Unified Modeling Language

UML) which has extensively been used for representing the models

f software systems in recent years (Ivers et al., 2004; Lallchandani

nd Mall, 2011; Malavolta et al., 2013). We however note that our

pproach also applies to arbitrary models as long as they follow a

ell-defined metamodel with explicit consistency constraints, which

s today’s norm. Such constraints specify the required syntactical

e.g. well-formedness) and semantical consistency (e.g. coherence

etween different views) for a model. Table 1 describes three typical

onsistency constraints on how a UML sequence diagram relates to

lass and state machine diagrams and the inheritance relationship

etween classes in the class diagram. These three constraints are

aken from the literature (C1 and C2 from Egyed, 2006) and UML

pecifications (C3).

Fig. 1 shows a UML fragment of the model which covers both

he structural view (a class diagram) and the behavioral views (a se-

uence diagram and a state diagram). Alice’s class diagram describes

hree classes GUI, Control and Driver and their relationships: an as-

ociation (between GUI and Control) and a generalization (between

ontrol and Driver). The sequence diagram describe a typical scenario

f running the washing machine which involves the interaction be-

ween the instances of classes GUI and Control, whereas the state ma-

hine diagram shows the behavior of the controller of the washing

achine, i.e. class Control.

Let us now assume that both Alice and Bob check out the latest

ersion (i.e. the original version) from a common repository and be-

in making their changes. Alice (see version 1 in Fig. 2) designs be-

avioral aspect of the new rinsing feature by adding message rinse



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 139

+spin()

+rinse()

Control

+run()

GUI gui:GUI ctrl:Control

start
wash

spin

washing

spinning

wash

spin

+stop()

Driver

stop

C1(start)

C1(wash) 

C2(ctrl)

Fig. 1. Original version (the common ancestor).

t

t

t

d

n

s

c

c

s

i

s

o

b

i

c

W

c

t

a

p

i

o

p

a

u

v

i

s

r

o

c

t

B

gui:GUI ctrl:Control

start
wash

rinse

spin

stop

+spin()

+rinse()

Control

+init()

GUI

+stop()

Driver

turnOff

C1(start)

C1(wash)

C1(turnOff)

C3(Control)

C3(Driver)

washing

rinsing

wash

rinse

spinning
spin

stop

Fig. 3. The merged version.

C

g

h

t

G

C
m

e

i

o

A

i

m

fl

o

B

c

n

s

i

fl

t

o

t

s

t

d

o object ctrl (R5 in Fig. 2) and adding state rinsing and its associated

ransitions in the state machine diagram (R2, R3, and R4). She also no-

ices that the model has an inconsistency, i.e. C1(start): the sequence

iagram has a message named start to object gui, but class GUI does

ot have a corresponding operation. She therefore renames message

tart to run (R6). She also makes class Driver become a subtype of

lass Control (R1), possibly thinking that a driver should be a special

ontrol.

In the meanwhile, being unaware of Alice’s changes, Bob (see ver-

ion 2 in Fig. 2) completes the design for the stopping feature by mak-

ng class Control become a subtype of class Driver (R8), adding a mes-

age stop to object ctrl (R10), and adding a message turnOff (sent to

bject gui; R11). He also attempts to fix the inconsistency C1(start)
y renaming both operation run() to init() (R9) and message start to

nit (R7). Although both Alice and Bob’s models solve the same in-

onsistency C1(start), they do so in a manner that is not compatible.

hen both engineers check in their own version, the merging pro-

ess should recognize this problem, and this is their first real chance

o collaborate with the goal to identify conflicts and inconsistencies

mong their work (if any), and identify possible solutions. This exam-

le demonstrates the three-way merging approach where the merg-

ng considers the two models as well as their common ancestor. The

utput is produced by applying this three-way model merging ap-

roach where the merging considers the two model versions as well

s their common ancestor. The three-way merging approach is widely

sed in almost all versioning systems (including text, code and model

ersioning systems) (Brosch et al., 2012b; Mens, 2002). Most of exist-

ng model versioning systems would typically produce a merged ver-

ion as in Fig. 3 and highlight a conflicting change: both Alice and Bob

enamed message start differently. The system then would ask (either

f) them to deal with the conflict. However, doing so only addresses

onflicts, not inconsistencies.

Even if the direct conflict (the incompatible names) is resolved,

he resulting model still has inconsistencies. Firstly, since Alice and

ob have each created an inheritance relationship between classes
++spin()

+rinse()

Control

+run()

GUI gui:GUI ctrl:Control

run

wash

rinse

washing

rinsing

wash

rinse

+stop()

Driver

spin

spinning

spin
stop

C1(wash)

C2(ctrl)

R1

R2

R6

R3
R4

R5

Version 1 

Alice

Fig. 2. Alice’s and B
ontrol and Driver, but in different directions, both of them are inte-

rated into the merged version which now has an illegal circular in-

eritance (violating constraint C3). Secondly, in the merged version

he new message turnOff does not match with any operation in class

UI, which causes another inconsistency (i.e. violation of constraint

1(turnOff)). In addition, there is still no operation in class Control

atching with message wash, and thus inconsistency C1(wash) still

xists in the merged version. Finally, constraint C1(start) is violated

n the original version (since message start received by instance gui

f class GUI does not match with any operation in the class), and both

lice and Bob, each in their own way, have attempted to resolve this

nconsistency. However, this constraint becomes violated again in the

erged version since only the operation run() is updated and the con-

ict involving the renaming of message start is awaiting manual res-

lution. Hence, the choice made to resolve the conflict (i.e. Alice’s or

ob’s renaming of start()) has consequences on the resolution of in-

onsistencies.

It is also noted that Bob and Alice both also made changes that are

ot related to the inconsistencies above. For example, Alice added the

tate rinsing in the state diagram, and it is easy to see that this change

s neither related to the circular inheritance problem nor to the con-

icting renaming of the method/message. Therefore, it is important

o: (a) recognize automatically that the added state is independent

f the other changes; and (b) preserve the added state even though

here are inconsistencies. It is also noted that in the case where de-

igners make changes to separate parts of a model, inconsistency (be-

ween those parts) may also arise, and our approach is also able to

eal with them.
+spin()

+rinse()

Control

init()

GUI gui:GUI ctrl:Control

init

wash

spin
wash

+stop()

Driver

stop

C1(wash)

C1(turnOff)

turnOff

R7
R8

R9

R11

R10

washing

spinning

wash

spin
stop

Version 2 - Bob

ob’s versions.



140 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

Table 2

Life-cycle of an inconsistency: being present (P) or absent (A). 1, 2, 3, and 4 denote Patterns 1, 2, 3, and

4 respectively.

Model 1 2 3 4 No inconsistency in merged

Original P P P P A A A A P P P P A A A A

Version 1 P P A A P P A A P P A A P P A A

Version 2 P A P A P A P A P A P A P A P A

Merged P P P P P P P P A A A A A A A A

e

n

c

c

s

t

t

t

t

F

n

o

(

r

fi

t

t

m

c

s

e

s

t

c

o

t

a

s

a

T

e

(

4

w

a

c

i

(

c

o

s

2 The example and algorithm that we present here follows the three-way merging

but note that our approach can be generalized to n-way model merging.
Model merging needs to preserve consistent merges, report in-

consistencies, and explore alternative merging solutions for inconsis-

tencies (attempting to maximize consistency in the merged model

while preserving as many changes made by Bob and Alice as possi-

ble). In the rest of the paper, we will show that our approach is able

to identify whether a merge is possible and if not which compromises

are necessary. The important contribution here is that our approach

does not do that on the granularity of an entire model but rather at

the granularity of individual consistency checks. For example, Bob’s

addition of the inheritance relationship is not related to the conflict-

ing renaming of the method. Our approach recognizes that the merg-

ing of the one is possible even if the merging of the other is not. In

addition, it recognizes that there are choices for merging the others

which are presented to Alice or Bob.

3. Lifecycle of an inconsistency

It is important to understand how inconsistencies have arisen

in the merged model, as part of the investigation of how to resolve

them. Table 2 captures a typical lifecycle of an inconsistency in

terms of its presence (denoted as P) and absence (denoted as A) in a

given version of a model. There are four model versions that we are

interested in here: the original model (i.e. the common ancestor), the

versions to be merged (i.e. Versions 1 and 2), and the merged model.

The presence of an inconsistency in a model version means that the

corresponding consistency constraint has been instantiated and eval-

uated as being inconsistent in that model. By contrast, the absence of

an inconsistency indicates that the related constraint instance either

has been evaluated as being consistent or the constraint instance

no longer exists due to the deletion of the context element. Table 2

captures all possible scenarios (i.e. all permutations) of the presence

and absence of an inconsistency in the models to be merged, the

common ancestor and the merged model.

Inconsistencies existing in the original model may disappear in

the merged model (e.g. C2(ctrl) in the running example, see Fig. 1)

since the revised changes and/or the merging itself may have fixed

them (see column “No inconsistency in merged” in Table 2). The

merged model may however contain inconsistencies due to one of

the following patterns of reasons:

1. Pattern 1: An inconsistency exists in the original model, still ex-

ists in the two versions (since neither of the changes were able to

resolve it), and also exists in the merged model (since integrating

the changes from both versions still cannot resolve it). The vio-

lation of constraint C1(wash) is an example of this inconsistency

type.

2. Pattern 2: An inconsistency exists in the original model (e.g.

C1(start)), but is absent in one or both revised versions (since

either of the changes has fixed it). However, returns in the

merged model (since merging the changes has re-created the

inconsistency).

3. Pattern 3: An inconsistency (e.g. C1(turnOff)) does not exist in

the original version, but is present in one or both revised ver-

sions (since the change(s) has caused it) and is still present in the

merged model (since merging the changes has not affected it).
4. Pattern 4: An inconsistency does not exist in the original model,

still does not exist in both versions, but is present in the merged

model (since merging the changes has caused the inconsistency).

The violation of constraints C3(Control) and C3(Driver) is an ex-

ample of this inconsistency type.

Inconsistencies whose lifecycle follow the first pattern have pre-

xisted in the original model and also existed in the versions. We will

ot be able to resolve such inconsistencies by reversing the revisions’

hanges since such changes were not the causes of the inconsisten-

ies. Applying conflicting changes, if they exist, may be able to resolve

uch inconsistencies. If none of the changes can resolve an inconsis-

ency, it is classified as persistent inconsistency.

Inconsistencies whose lifecycle follows the remaining three pat-

erns are caused by either the changes in the revisions (pattern 3) or

he merging of those changes together (patterns 2 and 4). We will

herefore be able to fix them by reversing the appropriate changes.

or example, an inconsistency following pattern 2 exists in the origi-

al model, but is absent in one or both revised versions (since either

f the changes has fixed it) and then returns in the merged model

since merging the changes has re-created the inconsistency). Thus,

eversing the changes (in one of the revised versions) that undo the

xing of the inconsistency will resolve the inconsistency. We refer to

hose inconsistencies as non-persistent inconsistencies.

Our approach detects inconsistencies using an existing incremen-

al inconsistency checker (Egyed, 2006) which identifies model ele-

ents that are changed and that affect the truth values of consistency

onstraint instances. Such elements form the scope of a constraint in-

tance, which is established by automatically observing which model

lements are accessed during the evaluation of consistency con-

traints. This incremental inconsistency checker enables us to iden-

ify the constraint instances that are affected by changing a given lo-

ation, which is a model element’s field which affects the truth value

f the constraint instances. As a result, changes made to a model only

rigger re-evaluations of the affected constraint instances, rather than

ll the constraint instances. In addition, the scope of a constraint in-

tance is also the basis for resolving a violation of the constraint (i.e.

n inconsistency) since it indicates the locations that may need fixing.

his incremental inconsistency checking approach has been shown

mpirically to be highly scalable for large, industrial UML models

Egyed, 2006).

. Architectural overview

This section introduces the architecture of our merging frame-

ork (Fig. 4). The main objective of our approach is to provide a guid-

nce mechanism to support software engineers in merging their con-

urrent changes to the model while maximizing its consistency. As

nput, our approach requires versions2 of design models to be merged

2...n), their common ancestor (i.e., original model) to compute the

hanges made relative to the earlier state, and a customizable set

f consistency constraints that consistent model merging should con-

ider. The first phase of our merging process employs the existing



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 141

Merging

Phase 1

Original model 

(M)

Version 2 

(M2)

Merging

Phase 2

Difference Set 

(∆)

Version 1 

(M1)

Differencing

Initial merged 

model

Final

candidate

merged 

models

Consistency

constraints

Consistency 

checking

Do non-persistent 
inconsistencies exist?

Yes

No

Fig. 4. A consistent merging framework for model versions.

t

t

m

m

i

w

v

t

fi

n

t

D

m

D

i

z

t

d

p

n

t

e

C

m

n

v

D

t

t

e

t

c

a

m

p

o

a

c

u

e

a

s

h

w

p

i

t

d

t

D

a

f

e

M

a

e

r

d

f

D

t

t

M

s

D

s

p

a

d

a

m

w

hree-way merging approach to obtain the initial merged model. We

hen check for non-persistent inconsistencies in the initial merged

odel, and if they do not exist, the process is finished and the initial

erged model is the final outcome of the merging. If non-persistent

nconsistencies are found, the process moves to the second phase

here variations of the initial merged model are computed (by re-

ersing or applying changes in the versions) to find consistent solu-

ions. We now describe the merging process in more detail.

An architectural model, which represents a software system, is de-

ned as below. Although we focus on UML models in this paper, the

otions and ideas in our approach are generally applicable and cus-

omizable to other types of modelling languages.

efinition 1 (Software model). A software model consists of a set of

odel elements.

efinition 2 (Model element). A model element is a record compris-

ng: a universally unique identifier (UUID), a type (i.e. metaclass), and

ero or more named structural features, whose value can be a primi-

ive type or a reference to other model elements.

The definitions of model elements (i.e. their type and features) are

escribed in detail in a metamodel (e.g. UML metamodel). For exam-

le, Control is a model element of type Class in the model of our run-

ing example (see Fig. 1). Component Control has a name feature (of

ype string) or an ownedOperation feature (a reference to a set of op-

rations, which are model elements of type Operation, in the class).

omponent Control has an UUID and it is assumed that although a

odel element may be changed in various versions, its UUID does

ot change.3 Change actions applied to a design model yield a new

ersion of it. Those change actions are formally defined as below.

efinition 3 (Change action). A change action is one the following

hree types of primitive action: add(e, t) – add a new model element

ype t with the UUID of e; delete(e, t) – delete an existing model el-

ment of type t with the UUID of e; and modify(e, f, vo, vn) – modify

he value of feature f of e from vo to vn.

For example, Alice creates message rinse to component instance

trl, which consists of the following sequence of primitive actions:

dding a new message rinse, modifying its receiveEvent feature, and

odifying the represent feature of Lifeline ctrl. For clarity, later in this

aper we present changes in terms of their intuitive intended effects

n the model, rather than these formal actions. For instance, deleting

n inheritance relationship is described as a deletion, rather than as
3 In practice, most tools support for models also provide and use unique identifi-

ation for model elements. For instance, the standard textual encoding of UML models

sing XML Metadata Interchange (XMI) requires a unique XMI identifier for each model

lement.

d

i

t

modification to an attribute. We also view deleting a message as a

ingle action.

Since a model is versioned, we are able to identify what exactly

as been deleted in the previous version of the model. Similarly to the

ork of Blanc et al. (2008) we require that for a delete(e,t) action to be

ossible, the element being deleted must not be referred to elsewhere

n the model (this condition is necessary in order to ensure that add is

he opposite of delete). However, we note that, unlike Blanc et al., we

o not distinguish between features that are references and features

hat are values.

efinition 4 (Reverse action). The reverse action of action a, denoted

, is the action that has the opposite effect to a, as defined in the

ollowing table:

Action a Reverse action a

add(e, t) delete(e, t)

delete(e, t) add(e, t)

modify(e, f, vo, vn) modify(e, f, vn, vo)

The first step of our process (see Fig. 4) is to compute the differ-

nces between each revised model (e.g., versions 1 and 2, denoted

1 and M2) and the common ancestor (M) by leveraging state-of-the-

rt model differencing techniques (e.g. Abi-Antoun et al., 2006; Chen

t al., 2004; Xing and Stroulia, 2005 or see Brosch et al., 2012b for a

eview of existing model differencing techniques). The difference is

efined as below, where we use M + � to denote the model resulting

rom applying action sequence4 � to model M.

efinition 5 (Difference between models). The difference � be-

ween two versions Mold and Mnew of a model is a sequence of actions

hat when applied to model Mold, yields model Mnew, i.e. Mold + � =
new.

We extend the notion of the reverse of an action to also apply to

equences of actions.

efinition 6 (Reverse of action sequence). The reverse of the action

equence �, denoted as �, is a sequence of actions that has the op-

osite effect to �, i.e. (M + �) + � = M.

Note that � is computed simply by reversing the sequence in �

nd replacing each action a with its reverse a. When two (or more)

ifference sets of changes �1 and �2 (from two different versions)

re applied to the same model (i.e. the common ancestor), conflicts

ay arise due to contradicting changes. The two types of conflict are

hen one software engineer modifies a feature of a model element

eleted by the other (i.e. modify(e, f, vo, vn) in �1 and delete(e, t)

n �2), and when both software engineers modify the same model
4 We overload notation slightly: if A is an action set then we also use M + A to denote

he application of action set A to model M.



142 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

a

w

(

fi

f

t

w

w

e

t

u

a

c

c

a

c

D

a

�

�

c

a

a

A

t

c

T

t

i

i

i

t

c

a

(

p

m

F

E

element feature in different ways (modify(e, f, vo, vn) in �1 and

modi f y(e, f, vo, vn′) in �2). In our running example, Alice and Bob

rename operation process() differently, which causes a conflict. Note

that equivalent changes (e.g. creating a new class with the same

name) may also be considered as a conflict but we deal with this sim-

ply by considering them as equal (i.e. the same UUID) and merging

their features, i.e. a model element is included in the merged model

which contains all features of both.

The next step of our approach (merging phase 1 in Fig. 4) in-

volves computing the initial merged model by applying to the com-

mon ancestor model the union of all (non-conflicting) changes de-

tected among the versions. Conflicting changes (modify–modify and

delete–modify conflicts) are temporarily ignored at this stage: we do

not employ any strategy nor ask the user to decide which changes

shall be applied to the original model. User involvement, if desired,

is possible later on when merging options are suggested to the user,

which we will discuss in detail in Section 5. Therefore, this first phase

of merging is fully automated. Before defining the initial merged

model (Definition 7) we need to introduce notation to refer to con-

flicting and non-conflicting subsets of an action set. The intuition is

that given two conflict-free action sets A1 and A2, some of the actions

in A1 conflict with A2, whereas others do not, and we use conf(A1, A2)

to denote the set of actions in A1 that conflict with A2. We also define

nonconf(A1, A2) to be the set of actions in A1 that do not conflict with

A2. Similarly, we have that conf(A2, A1) (respectively nonconf(A2, A1))

is the set of actions in A2 that conflict (respectively do not conflict)

with A1. We also extend this definition to be applicable to sequences

of actions: nonconf(�1, �2) is the set of all actions in the action se-

quence �1 that do not conflict with any action in the sequence �2.

Definition 7 (Initial merged model). The initial merged model Mi

of two variant models, M1 and M2, with respect to the common

ancestor model M is defined as Mi = M + (�′
1

∪ �′
2
) where �′

1
=

noncon f (�1,�2) and �′
2

= noncon f (�2,�1) are the actions applied

to M to obtain Mi.

For example, the merged version (see Fig. 1) in the example pre-

sented in Section 2 is the outcome of the first phase. Note that our

approach deals with sets of actions, rather than with sequences of ac-

tions. The effects of modifying field f of model element e1, and then

modifying field f′ of entity e2 are the same if the order if swapped.

These actions are conflict-free. Although in general the order of ac-

tions matters, we only consider conflict-free action sets, and for these

the order in which actions are applied makes no difference, so long
Change set Action

Δ′
1 (The reverse of Alice’s delete(Driver-in

non-conflicting changes) delete(rinsing, S

delete(rinse, Tra

modify(Transiti

delete(rinse, Me

Δ1 − Δ′
1 modify(Message

(Alice’s conflicting changes)

Δ2 − Δ′
2 modify(Message

(Bob’s conflicting changes)

Δ′
2 (The reverse of Bob’s delete(Control-i

non-conflicting changes) modify(Operati

delete(stop, Me

delete(turnOff,

Fig. 5. The set of available actions
s the creation of new entities precedes their use. In other words,

e can consider, without a loss of generality, that the actions in a

conflict-free) set are always applied in the order: creation of entities

rst, then changes, and finally deletions. Conflict-free actions there-

ore can be automatically applied without user involvement. By con-

rast, conflicting actions may require human intervention (to choose

hich actions should be selected over the others) and thus are dealt

ith at the later stage of our merging process.

We need to treat conflicting and non-conflicting changes differ-

ntly because non-conflicting changes have already been applied to

he merged model (and, if they result in inconsistencies, then we

ndo them). On the other hand, conflicting changes have not been

pplied to the model, and where we can do so without creating in-

onsistencies, we want to apply a (non-conflicting) subset of those

hanges. Hence, both conflicting and non-conflicting changes give us

set of available actions that can be used for resolving inconsisten-

ies in the initial merged model Mi.

efinition 8 (Available repair actions�). We define the set of avail-

ble repair actions � for resolving inconsistencies in Mi to be � =
′
1

∪ �′
2
(�1 − �′

1
) ∪ (�2 − �′

2
), where �′

1
= noncon f (�1,�2) and

′
2 = noncon f (�2,�1).

The set of available actions � contains the reverse of the non-

onflicting changes between the model versions and the common

ncestor, and the conflicting changes. Fig. 5 shows the set of avail-

ble actions � for our running example. For example, in version 1

lice has added an inheritance relationship from component Driver

o component Control, and thus this change action is part of the non-

onflicting changes �′
1

between version 1 and the original version.

he reverse of this action, i.e. deleting the Driver-inherit-Control rela-

ionship (of type Generalization), is part of �′
1
. Note that the conflict-

ng actions involving renaming message start are stored as a pair (in

talic in Fig. 5).

The initial merged model together with conflicting changes stored

n the set of available actions � can be viewed as a “wish list” con-

aining all the things the users wanted. If there are no inconsisten-

ies then the wish list is granted, i.e. we are done. However, if there

re inconsistencies then variations of the initial model are computed

by including and/or excluding things from the wish list which is ex-

lored in detail below) to reflect consistent resolutions. The initial

erged model is thus subjected to many combinations of changes.

or each variation, a consistency check is performed (again using

gyed, 2006 which is very fast because the variations differ in few
ID

herit-Control, Generalization) R1

tate) R2

nsition) R3

on[spin], source, rinsing, washing) R4

ssage) R5

[start], name, ‘start’, ‘run’), R6

[start], name, ‘start’, ‘init’) R7

nherit-Driver, Generalization) R8

on[init], name, ‘init’, ‘run’) R9

ssage) R10

Message) R11

� for our running example.



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 143

c

o

s

5

s

(

M

g

a

s

c

t

i

C
o

i

e

s

g

c

i

o

a

s

a

f

S

t

p

l

a

u

o

t

a

w

t

fl

D

f

t

⊆

d

s

D

(

n

n

t

s

i

o

fl

fi

w

e

p

a

fi

b

s

s

b

t

s

→
s

t

b

t

t

c

a

c

e

o

i

hanges only). In the next section, we will focus on the second phase

f our merging approach (see Fig. 4) and explain how we employ a

earch technique to find the final candidate merged models.

. State space search formulation

We formulate the second phase of merging in our framework as a

tate space search in which each state in the search space represents a

merged) model. The initial state represents the initial merged model

i. In a goal state, the merged model is consistent.5 In order to reach a

oal state, the search may have to go through a number of intermedi-

te states in which the model may contain some inconsistencies. Each

tate S is therefore associated with a list of non-persistent inconsisten-

ies (e.g. C1(turnO f f ), C1(start), C3(Control), C3(Driver) in the ini-

ial state6) in the merged model (denoted as S.inconsistencies) and an

nconsistency that we choose to fix (denoted as S.inconsistency), e.g.

1(turnO f f ). A state transition represents the simulated application

f certain changes to the model in an attempt to repair the chosen

nconsistency.

In our approach, the state space is implicit: we incrementally gen-

rate the next states as they are explored. An important part of the

earch is therefore determining the next states to be explored from a

iven state. Function succ() in Algorithm 1 describes how such suc-

Algorithm 1: succ(S, �, P) and getCAs(�, P)

function succ(S, �, P): generate the successor states

from a given state

1. availActions, succs:= ∅, ∅
2. if S.inconsistencies �= ∅ then

3. S.inconsistency := S.inconsistencies.removeFirst

Inconsistency()
4. iScope := scope(S.inconsistency)
5. for each l ∈ iScope do

6. availActions := availActions ∪
{(locn(a), a)|a ∈ � ∧ locn(a) = l ∧ (l, a) �∈ P}

7. for each A ⊆ availActions do

8. if A is conflict-free then

9. succs := succs ∪ {〈S′, A〉} where S′ = S + A

10. sort succs by 
 (which is a partial order)

11. return succs

function getCAs(�, P): generate options for resolving

conflicting actions

1. availActions, CA := ∅, ∅
2. for each conflicting pair of actions 〈a1, a2〉 ∈ � do

3. if (locn(a1), a1) �∈ P ∧ (locn(a2), a2) �∈ P then

/* Have neither a1 nor a2: add them */

4. availActions := availActions ∪ {(locn(a1), a1),
(locn(a2), a2)}

5. for each A ⊆ availActions do

6. if A �= ∅ and A is conflict-free then

7. CA := CA ∪ {A}
8. sort CA by 
 (which is a partial order)

9. return CA

essor states are generated in our approach. This function takes as

nput a given state S, the set of available repair actions � previously

btained in the initial merging process, and the path P (represented
5 Note that persistent inconsistencies are ignored since the search only looks for

ctions in the set of available set actions �. These actions are not able to resolve per-

istent inconsistencies.
6 C1(wash) is persistent and hence ignored.

t

s

i

p

w

w

s a list of location–action pairs) from the initial state to state S. The

unction returns as output a list of state-actions pairs 〈S′, A〉 where
′ = S + A (denoting that state S′ is generated by applying actions A to

he model at state S), which is ordered (line 10 in Algorithm 1) by a

reference ordering (
). The preference ordering (see Definition 9 be-

ow), which is a partial order, reflects a difference between conflicting

nd non-conflicting actions. Non-conflicting actions in � represent

ndoing changes to the model, and therefore we prefer to do as few

f these as possible. On the other hand, conflicting actions in � are

he application of (some of) the changes that the modelers have made,

nd therefore we want to apply as many of these as possible. In other

ords, a solution is more preferred if it has fewer non-conflicting ac-

ions, and more conflicting actions (without actually having a con-

ict). We define the preference ordering below.

efinition 9 (Preference ordering 
). We define A1 
 A2 (“A1 is pre-

erred to A2”, where A1 and A2 are each a conflict-free set of ac-

ions) as holding iff nonconf(A1, A2) ⊆ nonconf(A2, A1) ∧ conf(A2, A1)

conf(A1, A2).

Observe that A1 
 A2 does not imply that A1 ⊆ A2, and we therefore

efine a stronger version of preference that does imply that A1 is a

ubset of A2. Also, note that A1 
 A2 is a partial order.

efinition 10 (Strong preference ordering �). We define A1 � A2

where A1 and A2 are each a conflict-free set of actions) to hold iff

oncon f (A1, A2) ⊆ noncon f (A2, A1) ∧ con f (A2, A1) = con f (A1, A2).

Observe that A1 � A2 implies that A1 ⊆ A2 (but the converse does

ot hold since the difference could involve conflicting actions).

The succ() function basically builds up a set of available actions

hat can be applied to the merged model associated with a given

tate S (lines 2–6), and for each combination of those actions that

s conflict-free (i.e. does not include actions that conflict with each

ther), it creates a new successor state (lines 7–8). Two actions con-

ict with each other in the following situations: (i) one action modi-

es a feature of a model element deleted by the other action; and (ii)

hen both actions modify the same model element feature in differ-

nt ways. It first checks if the model at state S contains some (non-

ersistent) inconsistencies, one of which (S.inconsistency) is chosen

nd we need to identify the available actions that can potentially

x it. As previously discussed, an inconsistency can be fixed only

y changing one or more model elements that the inconsistent con-

traint accessed during its evaluation, which is the scope of the con-

traint. The scope of a constraint instance is automatically computed

y observing which model elements are accessed during the evalua-

ion of the constraint. For instance, the evaluation of constraint C1, i.e.

elf.receiveEvent.covered → forAll(represents.type.ownedOperation

exists(name = self.name)), on message start accesses this mes-

age first. It then iterates over all Lifelines that the message is sent

o (due to the universal quantifier forAll – UML allows a message to

e sent on more than one lifeline). The lifelines are accessed through

he properties receiveEvent (referencing to another model element of

ype MessageOccurrenceSpecification) and covered of that MessageOc-

urrenceSpecification from the message start. The evaluation then iter-

tes (due to the existential quantifier exists) over the operations of the

lass that is the type of the lifeline. This is done by accessing the prop-

rties represents (instance gui of the lifeline), type (class GUI), and

wnedOperation (operation init()). The scope of constraint C1(start)
s therefore the model elements {start, gui, GUI, init()}.

We obtain the scope elements of S.inconsistency (line 4) and re-

rieve actions in the available action set � that affect any of those

cope elements (lines 5–6). In order to avoid the search from falling

nto a cycle, we discard any actions that have been previously ap-

lied in the path leading to this state. For example, suppose that

e choose to explore options for fixing C3(Control) in the model

here C1(turnOff ) has been fixed by deleting the turnOff message.



144 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

Fig. 6. An example of the search tree (goal states are indicated using white on black).

Algorithm 2: search(S, �, P)

procedure search(S, �, P) navigate the search space

from a given state

1. successors := succ(S, �, P)

2. succs := {〈s, a〉 | 〈s, a〉 ∈ successors ∧ ¬ s.explored}
3. for each 〈S′, A〉 ∈ succs do

4. if S′.pruned then continue /* skip pruned */

5. S′.explored := true

6. S′.inconsistencies := S′.updateConstraints()
7. if S′.inconsistencies = ∅ then

8. S′.isGoal := true

9. CA := getCAs(�, P)
10. for each ca ∈ CA do

11. apply ca to S′ to get S′′
12. S′′.inconsistencies := S′′.updateConstraints()
13. if S′′.inconsistencies = ∅ then

14. S′′.isGoal := true

15. S′.isDominated := true

16. CA := {ca′|ca′ ∈ CA ∧ ¬ ca 
 ca′}
17. for each 〈S′′′, A′′′〉 ∈ succs do

18. if A 
 A′′′ then S′′′.pruned := true

19. else if S.inconsistency �∈ S′.inconsistencies

then /* successfully fixed constraint: prune,

then fix remaining constraints */

20. for each 〈S′′′, A′′′〉 ∈ succs do

21. if A � A′′′ then S′′′.pruned := true

22. search(S′, �, P ∪ A)

23. else /* do nothing: continue to next iteration */

Note initial call is search(S0, �, ∅) where S0 is the initial state

corresponding to the initial merged model and � is the set of

available actions.

s

Since the scope of constraint C3(Control) is Driver.generalization7 and

Control.generalization, cross-checking the available action set � (see

Fig. 6) gives us two available actions: deleting the generalization from

Driver.generalization (R1), and deleting it from Control.generalization

(R8).

The final part of the function (lines 7–9) uses the available ac-

tions to generate all possible combinations of non-conflicting actions

that can potentially resolve the S.inconsistency. Each of those combi-

nations gives a new successor state and the set of actions that are

applied to the model to bring it to this state. For example, given the

available actions R1 and R8, there are three possible combinations:

applying R1, applying R8, or applying both R1 and R8, which gener-

ates three successor states (S2, S3, and S4) of S1 (see Fig. 6).

A solution path (from the initial state to the goal state) represents

one option for resolving inconsistencies and conflicts in the merging.

There can be multiple goal states (and multiple solution paths), repre-

senting multiple valid ways of resolving inconsistencies and conflicts.

In the next section, we will describe how we explore the state space

in searching for all the possible goal states.

5.1. Incremental search space exploration

The search for a consistent version of the merged model follows a

depth-first-search style (see procedure search() in Algorithm 2 ). The

search progresses by expanding the first successor of a given state S

and going deeper and deeper until any of these scenarios are encoun-

tered: (a) a goal state is found and all conflicting-changes have been

tried; (b) it moves to a state but cannot resolve the inconsistency that

was chosen to be fixed; (c) it reaches a state that has no successors.

Then the search continues (noting, in case (a), that a goal state was

found), returning to the most recent node it has not finished explor-

ing. The search takes into account both negative and positive side ef-

fects of an inconsistency resolution. We now describe this process in

detail.

The search starts by generating a list of successors that are not

explored from the current state S (lines 1–2 of procedure search()).

We then move to explore each of those successors (line 3). Lines

4, 16–18, and 20–21 relate to pruning and are explained later. The
7 A.generalization denotes the set of generalization/super classes of A.

(

u

o

earch process marks the current state S′ as having been explored

line 5), and then requests the consistency checker to evaluate the

pdated model (line 6). The evaluation is done incrementally since

nly constraint instances whose scope elements are affected by



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 145

t

i

(

fi

i

u

t

a

c

c

f

m

a

s

t

i

s

t

fi

c

2

b

s

p

f

c

w

t

i

h

t

m

t

1

t

h

e

n

(

w

b

c

t

fl

R

a

a

A

b

A

s

t

C
s

t

c

i

c

c

s

s

r

a

p

F

S

R

m

b

{

(

w

i

i

s

c

i

w

b

p

t

t

a

R

R

m

C

s

(

c

p

d

o

p

t

o

o

o

c

r

s

h

o

m

w

a

b

w

c

s

c

o

i

a

l

n

n

r

he applied actions are re-validated. In the new state, the chosen

nconsistency may be absent (i.e. the fix is successful) or still present

the fix is not successful), and some other inconsistencies may also be

xed (positive effects) or some new inconsistencies may have been

ntroduced (negative effects). If there is no inconsistency found in the

pdated model (i.e. the fix is successful and does not cause any nega-

ive side-effects, line 7), then we will move to explore whether there

re any conflicting actions that have not yet been tried, and which

an be applied without introducing inconsistencies. This is done by

alling function getCAs() (line 9) to get possible actions sets, and then

or each ca ∈ getCAs() we apply ca (lines 10–11) and, if the resulting

odel is consistent, we mark it as a goal state (lines 12–14). Since

pplying additional conflicting actions results in a more preferred

olution, we also mark S′ as being a dominated solution (line 15).

If the updated model is inconsistent, there are two possibilities

hat should be considered. If the model was not consistent and the

nconsistency that we attempted to fix (by moving to this successor

tate) still exists, meaning that the fix was not successful, we will con-

inue to explore other successor states (line 23). Otherwise, i.e. if the

x successfully resolves the selected inconsistency, then the search

ontinues exploring to fix one of the remaining inconsistencies (line

2).

We also include a simple pruning mechanism in the algorithm

ased on the idea that whenever the violation of a constraint C is

uccessfully repaired by applying an action set A, then we do not ex-

lore any successors generated by an action set A′ that is less pre-

erred than A. The rationale is the principle of minimality: that if we

an successfully repair an inconsistency by applying action set A, then

e should not consider applying a less preferred action set (i.e. one

hat has unnecessary additional non-conflicting actions). The prun-

ng is implemented by lines 18 and 21 of search(). In line 21, when we

ave repaired an inconsistency, and are about to continue exploring

he repair of other inconsistencies, we go through the succs set and

ark the states generated by A′ (where A�A′) as being pruned. Note

hat the successor states are pre-sorted in order of preference. In line

8, when we have found a goal state, we also check for other solu-

ions that are less preferred, and prune them. Note that here, since we

ave found a goal-state, we can use a slightly stronger notion of pref-

rence that regards a state as being preferred not just if it has fewer

on-conflicting actions, but also if has additional conflicting actions


). We also add a check for pruned states (line 4 of search()). Finally,

e also perform pruning on the set CA (line 16) by removing possi-

le sets of actions that are less preferred than the current (successful)

onflicting action set ca.

The function getCAs() returns possible subsets of conflicting ac-

ions that are conflict-free, i.e. do not contain two actions that con-

ict with each other. For each pair of conflicting action, for example

6 and R7, if neither action has already been performed, then both

ctions are added to the set of available actions. Once the set of avail-

ble actions has been constructed, the function returns all action sets

⊆ availActions which are conflict-free. The search process converges

ecause the set of available actions (availActions), which is used in

lgorithm 1 (succ), decreases monotonically.

Fig. 6 shows the search tree of our running example. The search

tarts at S0 (the initial merged model) and chooses to fix inconsis-

ency C1(turnO f f ) (among the four inconsistencies8 C1(turnO f f ),
3(Control), C3(Driver), and C1(start)). There is only one succes-

or state S1 (corresponding to applying R11) in which inconsis-

ency C1(turnO f f ) is resolved. At state S1, the search continues and

hooses to fix inconsistency C3(Control) (among the remaining three

nconsistencies at this state). As discussed earlier, there are three suc-

essor states, and the search explores S2 first (i.e. performing R1). At
8 Recall that C1(wash) is detected as being “persistent” and hence excluded from

onsideration. a
tate S2, the merged model no longer has the circular inheritance is-

ue (Driver is no longer a subtype of Control) and there is only one

emaining inconsistency i.e. C1(start) (message start does not match

ny operation in class GUI). Since the selected S.inconsistency was re-

aired using R1, we prune {R1, R8} (dashed arrow from S2 to S4 in

ig. 6). The search then generates successor states (S5, S6, S7, S8, and

9) for S2 from all possible combinations of the available actions R6,

7 and R9. Note that since R6 and R7 are conflicting changes due to

odifying the same location (i.e. start.name) differently, they cannot

e part of the same combination (i.e. the combinations {R6, R7} and

R6, R7, R9} are excluded). The search then moves to explore S5 first

i.e. performing R6). At state S5, message start is now renamed to run,

hich still does not match the name of the message (i.e. init). This fix

s not successful, and thus the search backtracks to state S2 (unapply-

ng R6) and moves to explore S6 (applying R7). At state S6, message

tart is now renamed to init, which matches the message’s name and

onsequently resolves the inconsistency C1(start). Since there is no

nconsistency at S6, the state is marked as a goal state.9 At this point

e know that R7 suffices to repair the inconsistency, and so applying

oth R7 and R9 to resolve the constraint is unnecessary. We therefore

rune state S7 (indicated by the dashed arrow from S5). The search

hen moves to explore the remaining successor states and discovers

hat state S8 (both the operation and message are renamed to run) is

lso a goal state. Since R6 is a conflicting change (with R7), applying

6 and R9, which results in goal state S8, is preferred to applying only

9, and thus state S9 is pruned.

After finishing exploring all successor states of S2, the search

oves to S3, which causes a new inconsistency C1(stop) (since class

ontrol no longer inherits operation stop() from class Driver). The

earch then chooses to fix C1(stop) by applying R10 to the model

deleting message stop to move to state S10), which causes a new in-

onsistency C2(ctrl) since the sequence of incoming message to com-

onent ctrl no longer matches the transitions in the state machine

iagram). The search continues generating and exploring successors

f state S10 to fix inconsistency C2(ctrl) by trying all different com-

onents of the available actions R2, R3, R4, and R5. However, none of

hese components resolves the consistency.

Returning now to the example scenario, Alice and Bob, having run

ur merging tool, would be presented with two alternative merging

ptions (see Fig. 7), each of which corresponds to a goal state found by

ur algorithm. The left side of Fig. 7 corresponds to goal state S6: the

hanges R11 (deleting message turnOff), R1 (delete the inheritance

elationship between Driver and Control) and R7 (renaming message

tart to init) have been applied to the initial merged model. The right

and side of the figure corresponds to goal state S8, where instead

f R7, changes R6 (renaming message start to run) and R9 (rename

ethod init() to run()) have been applied.

Our merging algorithm returns all possible minimal goal states,

hich requires an extensive exploration of the search space. Since

ny of the alternative consistent versions found by our approach may

e chosen by the user, a “safe” solution is presenting all of them,

hich might be a large number, to the user and letting them make the

hoice. While future work would involve investigating how to present

uch solutions in an effective and user-friendly manner, a heuristic

an reduce the solution space and can also improve the performance

f the search. The heuristic reflects the fact that one would want to

ntegrate in the merge as much new information from the versions

s possible. Applying this heuristic to our search implies that we now

ook for optimal solution(s), which contain the minimal number of

on-conflicting changes that need to be unapplied and the maximal

umber of conflicting changes that can be applied. The metric is then

epresented as a distance of the path from the initial state to a goal
9 Note that in this example, there are no unapplied conflicting actions, since R7 has

lready been applied, and therefore R6 cannot be also applied.



146 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

gui:GUI ctrl:Control

start
wash

rinse

spin

stop

+spin()

+rinse()

Control

+init()

GUI

+stop()

Driver

turnOff

washing

rinsing

wash

rinse

spinning
spin

stop

R11

R1

gui:GUI ctrl:Control

start
wash

rinse

spin

stop

+spin()

+rinse()

Control

+stop()

Driver

turnOff

washing

rinsing

wash

rinse

spinning
spin

stop

R11

R1

R7

init
R6

run

+run()

+init()

GUI

R9

Merged

Option #1

S6

Merged

Option #2

S8

Fig. 7. Options presented to Alice and Bob.

0

10

20

30

40

50

102 103 104 105

Model Size

R
ep

ai
rs

/I
nc

on
si

st
en

cy
⊕

⊕

⊕ ⊕

⊕ ⊕

⊕

⊕

⊕

⊕
⊕

⊕⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕⊕⊕

⊕
⊕

⊕⊕⊕

⊕ ⊕

Fig. 8. Average number of repairs per inconsistency (dashed line = average across all

models).

e

f

E

a

t

i

a

s

v

m

e

a

“

m

b

i

t

O

e

state, and the optimal solution(s) would be the one(s) with the short-

est distance. Note that applying a conflicting action should be seen

as a good thing (i.e. negative cost) since we want to apply as many

of those actions as possible. We may therefore define the notion of

distance to assign a cost (e.g. 10 units) to unapplying a change, and

assign a cost (e.g. 1 unit) to each conflicting action that is not applied.

These numbers do not correspond to any real cost, and are simply

used to compare between unapplying non-conflicting changes and

applying conflicting changes. It is worth noting that the selection of

the specific cost ratio is somewhat arbitrary, and thus we could al-

low the user to specify it. Using this heuristic, we could identify and

present the best options to the software engineers. Alternatively, the

software engineers could also be given all the options ranked based

on the same distance measure used by our heuristic.

5.2. Repair generation

As presented in the previous section, the exploration to find

out how non-persistent inconsistencies in the initial merged model

Mi can be resolved using available actions in � are done in an

incremental manner. Specifically, we consider one (non-persistent)

inconsistency at a time and enumerate through only combinations

of actions in � that may affect the truth value of the constraint

associated with the inconsistency (i.e. accessing the constraint’s

scope). This approach utilizes the scope of a constraint to reduce the

number of combinations that need to be enumerated to identify fixes

for the constraint violation: from 2#changes to 2#scopeChanges where

scopeChanges is the number of change actions in � that access the

scope of the constraint. Nonetheless, it still involves iterating through

an exponential number of combinations just to find those combina-

tions that resolve an inconsistency. Thus, the worst-case computation

complexity of this approach is still exponential with the number of

change actions in � (if all actions in � access a constraint’s scope).

In practice, there is only a very small number of combinations of

available actions which can resolve an inconsistency. In fact, previ-

ous work (Reder and Egyed, 2012) has shown that independent of

the model size, there are on average only 12 possible repairs per in-

consistency10 (see Fig. 8). Thus, it is inefficient to enumerate through

a very large number of combinations, only to find 12 of which can

actually resolve an inconsistency.

We propose here a more efficient approach, which generates the

exact repair(s) for each inconsistency, by analyzing the structure of

a consistency constraint and its expected and observed validation

results (through observing the constraint’s validation) to determine
10 Data collected from the evaluations on 29 industrial UML models and 18 consis-

tency rules written in OCL.

q

(

C

xactly which parts of the inconsistency must be repaired. In the

ollowing we briefly outline the approach presented in Reder and

gyed (2012) and explain how this approach has been extended to be

ble to make repair actions concrete (i.e. a concrete value is known).

The basis for the repair generation is the so called validation

ree (Reder and Egyed, 2012), which is created when a constraint

nstance is first evaluated. For illustration we formalize constraint C1
s below.

Message m :

(∀l ∈ m.receiveEvent.covered :

∃o ∈ l.represents.type.ownedOperation :

o.name = m.name)

This constraint is written for a context element of the type Mes-

age. The condition of this constraint is a Boolean expression that is

alidated on the model. The constraint reveals the sequence in which

odel elements are accessed and the specific properties are used. For

xample, this constraint is a universal quantifier (∀) iterating over

set of lifelines l. These lifelines are found by first validating the

receiveEvent” property of message “m”, which references another

odel element of type “MessageOccurenceSpecification”; and then

y validating the “covered” property of that “MessageOccurenceSpec-

fication”, which references a model element of type “Lifeline”. De-

ails on the model elements and their properties can be found in

bject Management Group (2004). The universal quantifier then it-

rates over all lifelines found to ensure that all lifelines satisfy the

uantifier condition. This condition is another existential quantifier

∃o ∈ l.represents.type.ownedOperation).

The validation tree which was created when evaluating constraint

1(start) is shown in Fig. 9.



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 147

m[start]

∀
false

l ∈ m.receiveEvent.covered

∃
false

o ∈ l.represents.type.ownedOperation

=
false

o[init] m[start]

Fig. 9. Validation tree for C1(start). The circular nodes are Boolean expressions and

the edges list the validation results.

o

q

t

l

f

t

t

i

p

t

o

o

f

f

v

r

m

∨
o

i

a

v

t

a

t

f

a

t

e

a

R

a

t

a

e

c

i

t

s

o

r

s

a

i

n

v

t

i

n

C1(start) •
〈modify,Message[start], name, ‘init‘〉

+
〈modify,Operation[init], name, ‘run‘〉
〈modify,Message[start], name, ‘run‘〉

Fig. 10. Concrete repair tree for C1(start).

C1(wash) •

〈modify,Message[wash], receiveEvent〉
〈delete,Message[wash], covered〉
〈modify, Lifeline[ctrl], represents〉
〈modify, Lifeline[ctrl], type〉
〈add, Class[Control], ownedOperation〉
〈modify,Message[wash], name〉
〈modify,Operation[spin], name〉
〈modify,Operation[rinse], name〉

Fig. 11. Abstract repair tree for C1(wash).

f

s

a

c

c

r

t

r

c

m

e

(

a

o

t

n

p

s

s

n

“

s

a

m

o

6

a

2

I

t

p

t

T

g

a

p

i

6

g

The validation starts at the model element start (the root node

f the validation tree). The first operation executed is the universal

uantifier (∀) that iterates over all lifelines that the message is sent

o (UML allows a message to be sent on more than one lifeline). The

ifelines are accessed through the properties receiveEvent and covered

rom the message (m) start. The universal quantifier has as its condi-

ion an existential quantifier (∃) that iterates over the operations of

he component that is the type of the lifeline. This is done by access-

ng the properties represents (instance gui of the lifeline), type (com-

onent GUI), and ownedOperation (init). The condition of the existen-

ial quantifier compares (=) the message name (start) with the name

f each operation (only init in this case). Since there does not exist an

peration that is named start, the existential quantifier validates to

alse and thus the result of the complete constraint validation is also

alse (i.e. an inconsistency has been detected). More details of how a

alidation is built can be found in Reder and Egyed (2012).

A repair tree is built based on the validation tree. The nodes of the

epair tree are directly derived from the validation tree: ∀ and ∧ are

apped to + (denoting combinations of repair actions), while ∃ and

are mapped to • (denoting alternative repair actions). Each branch

f a validation tree has an expected and validated result. Note that

n Fig. 9 only the validated results are shown. The expected result for

constraint is always true and will be propagated top-down in the

alidation tree. A negation in the constraint will cause an inversion of

he expected result (true↔false). A mismatch between the expected

nd the validated result triggers the generation of repair actions. The

ype of the repair actions (i.e. create, delete, and modify) is derived

rom the logical operators and quantifier types: ∀ → delete, ∃ → cre-

te, and = → modify). The model elements that must be changed are

he leaves of the logical expression that are violated (mismatch of the

xpected result to the validated result) in the validation tree.

However, repair actions generated in Reder and Egyed (2012) are

bstract repairs. In this example, one abstract repair generated (as in

eder and Egyed, 2012) is the renaming of operation init, denoted

s modify(Operation[init], name), but it does not reveal which string

o rename the operation to. We therefore extend the work in Reder

nd Egyed (2012) to compute concrete repairs. The new repair gen-

rator takes additional information which is a set of available (con-

rete) actions �. Values for the repairs are derived from actions in �,

.e. � is used as the source for providing concrete values to instan-

iate the abstract repairs generated. For example, renaming message

tart to init (R7) is an action in � (see Fig. 5), which is an instance

f the abstract repair modify(Operation[init], name). Another abstract

epair suggested by the repair tree is the renaming of both message

tart and operation init() to the same name. Based on the available

ctions in �, another concrete repair for C1(start) is therefore mod-

fy(Operation[init], name, ‘init’, ‘run’) and (+) modify(Message[start],

ame, ‘start’, ‘run’). Fig. 10 shows the full concrete repair tree for the

alidation shown in Fig. 9 using the available actions in �. This repair

ree represents two alternative, available repair plans for resolving

nconsistency C1(start): renaming message start to ‘init’ (R7), or re-

aming both the message and operation init to ‘run’ (R6 and R9).
The repair generator is used in generating the successor states

rom a given state in our merging exploration algorithm, i.e. function

ucc() in Algorithm 1. More specifically, lines 4–9 of function succ()

re replaced with a call to the repair generator to obtain the exact

ombinations of actions (from the set of available actions �) which

an fix inconsistency S.inconsistency. For example, if we rely on the

epair generator instead of the constraint scope, there would be only

wo successor states of state S2 in Fig. 6: state S6 corresponding to

epair R7 and S8 corresponding to repair R6 ad R9.

Our repair generation approach is also able to identify new

hanges (i.e. not made in the versions) that can be applied to the

odel to resolve persistent inconsistencies and the potential side-

ffects of such changes. Specifically, for persistent inconsistencies

where we already know that we cannot resolve them using avail-

ble actions in �), we will provide the software architects with a set

f abstract repair plans represented in a hierarchical manner.

For example, the set of abstract repair plans for resolving (persis-

ent) inconsistency C1(wash) is shown in Fig. 11, which suggests a

umber of alternative ways to resolve this inconsistency. For exam-

le, repair action 〈modify, Message[wash], name〉 suggests that mes-

age “wash” needs renaming. Other alternatives to resolve this incon-

istency such as renaming operation “spin” (〈modify, Operation[spin],

ame〉) or operation “rinse” (〈modify, Operation[rinse], name〉) of class

Control” are also suggested. Again note that the repair action is ab-

tract since it does not reveal what string to rename it to. Existing

pproaches for computing concrete repairs may be used to comple-

ent our repair trees with concrete values and this will be the focus

f our future work.

. Evaluation

We have developed a prototype implementation of our approach

nd integrated it with IBM Rational Software Architect (RSA) (IBM,

013) and use the existing merging functionality provided with

BM RSA for obtaining the initial merged model. IBM RSA uses

he three-way merging approach which is compatible with our ap-

roach. It also uses the Model/Analyzer tool for checking inconsis-

encies (Reder and Egyed, 2010) (an implementation of Egyed, 2006).

he prototype currently focuses on implementing the merging al-

orithms (i.e. Algorithms 1 and 2 in the paper) and is available

t http://www.uow.edu.au/˜hoa/modelmerger/. We now present the

roof for the correctness of our algorithm and discuss its scalability

n practice.

.1. Correctness

We want to show that Algorithm 1 is sound, i.e. it only proposes

oal states that are consistent and are derived from actions in �; and

http://www.uow.edu.au/~hoa/modelmerger/


148 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

C

f

S

P

a

u

f

s

s

S

s

a

t

h

w

n

l

i

S

e

A

p

A

i

L

f

A

P

s

t

v

A

d

w

t

n

s

C

w

a

i

w

s

a

r

b

a

S

c

∅
T

w

t

t

P

i

t

P

t

e

e 1 1 1
that it is complete, i.e. it finds all (preferred) goal states. Note that we

do not want the algorithm to be complete in the sense of finding all

goal states, but in the sense of finding all preferred goal states, which

allows pruning to be done.

Theorem 1 (Soundness). The search() algorithm is sound: it only flags

as goal states those states that are derived by applying a subset of the

actions in � and where all non-persistent inconsistencies have been

resolved.

Proof. The algorithm only marks a state as a goal state if it has

no remaining inconsistencies (checked in lines 7–8 and 13–14 of

Algorithm 2). Furthermore, the actions that the algorithm considers

are derived from those in � (in the succ and getCAs functions), and so

it only ever applies actions from �. �

Whereas showing soundness is straightforward, proving com-

pleteness is less straightforward. We show the completeness of the

algorithm in two stages. Firstly, we define a variant algorithm that

does not do any pruning, and that does not apply conflicting actions.

This simpler algorithm (denoted below search′) consists of the bold

line numbers in Algorithm 2. We then proceed to prove that this sim-

pler algorithm is complete (as defined below). In the second stage,

we argue that the pruning mechanism and the application of addi-

tional conflicting actions only ever leave out a solution when a better

solution exists, and that the algorithm with pruning and conflicting

actions is therefore also complete (in a slightly different sense, de-

fined below).

We begin by defining when an action set A ⊆ � is a solution, and

when it is a non-redundant solution. We use “solution state” to refer to

the state that results from applying a solution (i.e. if A is a solution for

some constraints with respect to starting state S0, then S = S0 + A is a

solution state). We use the notation S�C to indicate that constraint(s)

C hold in state S.

Definition 11 (Solution). An action set A⊆� (where A must be con-

flict free) is a solution for C1 . . .Cn with respect to starting state S iff all

the Ci are satisfied in S + A.

The intuition behind non-redundant solutions is that the algo-

rithm is not complete in the sense of finding all solutions, since a

solution can be extended with additional, irrelevant, actions. Rather,

the algorithm is complete in the sense of finding all non-redundant

solutions.

Definition 12 (Non-redundant solution). An action set A⊆� is a non-

redundant solution for C1 . . .Cn w.r.t state S iff: A is a solution for

1 . . .Cn with respect to S; and there does not exist A′⊂A which is a

solution for C1 . . .Cn, i.e. A is minimal.

Before we proceed to tackle completeness, we first establish two

useful lemmas. The first shows that we can decompose solutions. The

second establishes that the succ(S, �, P) function finds all solutions

for a single constraint (as long as P does not prevent relevant actions

from being selected).

Lemma 1 (Decomposition of non-redundant solutions). Any set of

actions A that is a non-redundant solution for C1 . . .Cn with respect to

S0 can be decomposed into three parts, A1, A2−n, A+:

S0
A−→ S′ � C1 . . .Cn

A1 ↓ ↑ A+

S1 � C1 −→
A2−n

S2 � C2 . . .Cn

such that A1 is a non-redundant solution for C1 with respect to S0;

A2−n is a non-redundant solution for C2 . . .Cn with respect to S1 =
S0 + A1; and A+ is a finite sequence of zero or more sets 〈A+

1
, . . . , A+

k
〉,

where, if k ≥ 1, A+
1

is a non-redundant solution for C1 with respect

to S2 = S1 + A2−n, and each A+
i

(i > 1) is a non-redundant solution
or one of the constraints Cj (1 ≤ j ≤ n) with respect to S+
i−1

(where
+
1

= S2 + A+
1

and S+
i

= S+
i−1

+ A+
i

for i > 1).

roof. We construct A1, A2−n and A+ from A as follows. We know that

pplying A to S0 repairs C1. However, A may contain actions that are

nnecessary for repairing C1 (since A also repairs C2 . . .Cn). We there-

ore construct A1 by simply removing those unnecessary actions, re-

ulting in a non-redundant A1. Similarly, we know that, since A is a

olution for C1 . . .Cn w.r.t. S0, then A − A1 is a solution for C2 . . .Cn w.r.t.

1 = S0 + A1. However, A − A1 may contain actions that are not neces-

ary for repairing C2 . . .Cn. We therefore remove these actions, giving

non-redundant A2−n. Finally, we consider A+. If there are any ac-

ions remaining (i.e. A+ = A − (A1 ∪ A2) is non-empty), then we must

ave that C1 is violated in S2. We know that A+ is a solution for C1

.r.t. S2 (since A is a solution for C1 . . .Cn w.r.t. S0), but A+ may contain

on-essential actions for repairing C1. We obtain a non-redundant so-

ution for C1 w.r.t. S2 by selecting only the essential actions from A+

nto A+
1

and leaving the remaining actions in A+. We then consider
+
1

= S2 + A+
1

and the remaining actions A+. As before, if A+ is non-

mpty then there must be a violated constraint Cj, and so we form
+
2

by selecting those actions necessary for repairing Cj w.r.t. S+
i

. This

rocess is applied until A+ is empty. Termination is guaranteed since

is finite, and since each A+
i

is non-empty, so eventually all actions

n A+ are allocated to an A+
i

. �

emma 2 (Correctness of succ). If A⊆� is a non-redundant solution

or the single constraint C1 with respect to starting state S, then 〈S +
, A〉 ∈ succ(S,�, P) for any P that satisfies P ∩ A = ∅.

roof. The function succ() generates all possible non-conflicting sub-

ets of availActions⊆�. Since succ generates all subsets of availAc-

ions, it will therefore generate 〈S + A, A〉 as long as A does not in-

olve any actions that are in � but not in availActions. To show that

only requires actions that are in availActions we consider how succ

efines availActions: it computes it by filtering out actions in P, which

e know does not intersect with A (P ∩ A = ∅), and it limits to actions

hat are in the scope of C1. Actions that are outside C1’s scope can-

ot affect its truth, and since A is non-redundant, it cannot contain

uch actions: if it did, then they could be removed without affecting

1, and hence the shorter sequence would still be a solution, and A

ould not be non-redundant. Therefore, limiting to those actions in

vailActions does not reduce the options to repair C1, and hence succ

s complete as desired. �

We now show completeness of the modified algorithm, search′,
hich omits pruning and adding conflicting actions. We want to

how that search′ is complete in the sense that when it is invoked

s search′(S0, �, ∅), then all states S′ resulting from applying a non-

edundant solution A⊆� to the initial state S0 (i.e. S′ = S0 + A) will

e flagged as goal states by the algorithm. In fact, we actually prove

slightly more general result: that the call to search′(S0, �, P) flags
′ as a goal state, as long as P ∩ A = ∅. The desired result is clearly a

orollary of this stronger result (just let P = ∅, which trivially satisfies

∩ A = ∅).

heorem 2 (Completeness of search′). Algorithm search′ is complete:

henever A ⊆ � is a non-redundant solution for C1 . . .Cn with respect

o state S0, then, for any P satisfying P ∩ A = ∅, search′(S0, �, P) flags

he state S′ = S0 + A as a goal state.

roof. By induction over the number of constraints.

Base case: one constraint C1. In this case we need to show that

f A1 is a non-redundant solution for C1 with respect to state S0,

hen search′(S0, �, P) flags S1 = S0 + A1 as a goal state (as long as

∩ A = ∅). We do this by simply applying Lemma 2 and observing

hat search′ operates by calling function succ(), and then applying

ach option, so since 〈S0 + A1, A1〉 ∈ succ(S0,�, P) the algorithm will

ventually apply A . Since A is a solution, the constraint C holds



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 149

i

fl

r

(

c

s

fl

r

n

(

s

c

s

c

s

s

s

f

t

T

w

t

e

a

a

P

a

n

i

l

(

W

t

W

w

t

s

p

i

s

o

c

S

t

c

f

i

a

h

s

t

A

i

i

s

t

r

r

S

b

t

t

c

b

1



A

t

r

t

c

t

b

p

l

n S1, and therefore the condition in line 7 of search′ holds, and S1 is

agged as a goal state in line 8, as desired.

Induction hypothesis: Assume that whenever A′ is a non-

edundant solution for C2 . . .Cn w.r.t. state S1, then search′(S1, �, P)

for P ∩ A′ = ∅) reaches state S′ = S1 + A′ (note that this is a weaker

ondition than flagging S′ as a solution).

Induction proof: We need to show that if A is a non-redundant

olution for C1 . . .Cn with respect to state S0, then search′(S0, �, P)

ags the state S′ = S0 + A as a goal state (as long as P ∩ A = ∅). We

eason by following the operation of search′:

1. The algorithm first computes the set of successors using succ(S0,

�, ∅), focusing on constraint C1. From Lemma 1 we know

that we can decompose A into three disjoint parts: A1 (a non-

redundant solution for C1 w.r.t S0), A2−n (a non-redundant so-

lution for C2 . . .Cn w.r.t S1 = S0 + A1), and a (possibly empty) se-

quence of sets A+. From Lemma 2 we know that 〈S0 + A1, A1〉 ∈
succ(S0,�, ∅).

2. The algorithm iterates through the succs set, eventually process-

ing A1

3. When dealing with A1 it checks whether there are any violated

constraints in S1 = S0 + A1. There are two possibilities here.

(a) The first possibility, which is unlikely, is that applying A1 fixes

all of the constraints C1 . . .Cn. In this case the first if statement’s

condition holds (at line 7), and the state S1 is flagged as a goal

state as desired. This case corresponds to an empty A2−n and

A+, i.e. A = A1.

(b) The second possibility is that applying A1 fixes C1, but not

C2 . . .Cn. In this case the condition of the “else if” holds

(line 19), and the algorithm proceeds with the recursive call

search′(S1, �, A1).

4. Assuming case (b), the induction hypothesis is now applied, and

therefore we know that the state S2 = S1 + A2−n is reached (note

that A1 ∩ A2−n = ∅). There are now two cases.

(i) Constraint C1 holds in state S2 = S1 + A2−n. In this case the if

statement at line 7 is true, and S2 is flagged as a goal state

as desired (line 7). This case corresponds to an empty A+ (i.e.

A+ = 〈〉).

(ii) Constraint C1 does not hold in state S2. In this case the algo-

rithm proceeds to call search
′(S2,�, A1 ∪ A2−n). This recursive

call uses succ() to find A+
1

(since A+
1

is a non-redundant solu-

tion for C1 w.r.t. S2 Lemma 2 applies), then applies A+
1

to fix

C1, resulting in a state S+
2

. If we have cumulatively applied A

to S0 (i.e. there is no A+
2
, so A = A1 ∪ A2−n ∪ A+

1
) then, since

A is a non-redundant solution for C1 . . .Cn w.r.t. S0, we know

that S+
2

� C1 . . .Cn, so the condition in line 7 holds, and the

algorithm flags S+
2

as a goal state as desired (line 8). Other-

wise the algorithm proceeds to apply each A+
i

in turn (using

Lemma 2, since each is a non-redundant solution), and eventu-

ally reaches the state where A has been cumulatively applied,

all constraints are repaired, and this state is flagged as a goal

state, as desired. �

We have shown that the simplified algorithm search′, that does

ot do pruning and does not apply additional conflicting actions

using getCAs), is complete in the sense of finding all non-redundant

olutions. We now extend this, by arguing that adding pruning and

onflicting actions does not cause the algorithm to miss any preferred

olutions. Note that this involves a slight change in the notion of

ompleteness: the full algorithm does not find all non-redundant

olutions, since it is possible for pruning to cause a non-redundant

olution to be missed. However, this will only happen when the

olution being missed is less preferred than another solution that is

ound, and so we show that the full search algorithm is complete in

he sense of finding all preferred solutions.
heorem 3 (Completeness of search). The full algorithm is complete:

henever A⊆� is a non-redundant solution for C1 . . .Cn with respect

o state S0, then either S′ = S0 + A is flagged as a goal state, or there

xists another state S′′ = S0 + A′′ that is the result of applying to S0 an

ction set A′′ that is preferred over A (i.e. A′′ 
 A) and S′′ is flagged as

goal state.

roof. We have already shown that the algorithm without pruning

nd conflicting actions is complete in a stronger sense (finding all

on-redundant solutions). We therefore only need to show that prun-

ng and applying conflicting actions can only result in missing a so-

ution state S′ when another solution state S′′ that is more preferred

i.e. is the result of a more preferred action set) is found.

Let us first consider pruning (lines 4, 17–18, 20–21 in Algorithm 2).

e need to show that whenever the algorithm prunes a solution,

here exists a more preferred solution that is flagged as a goal state.

e observe that the pruning mechanism in lines 17–18 applies only

hen a goal state is found, and that it operates by pruning goal states

hat are less preferred to the current goal state. This satisfies the de-

ired condition: a goal state is marked as pruned exactly when a more

referred goal state has just been found and marked as a goal.

By contrast the pruning in lines 20–21 applies when a constraint

s fixed, but other constraints remain (so the current state is not a goal

tate). We need to argue that pruning does not cause us to miss out

n goal states.

Consider a situation where A1 is a non-redundant solution to a

onstraint C1 w.r.t. state S0, and we are pruning another state Sa
1

=
0 + A′, because A1 � A′ (line 21). By the definition of �, we can

herefore view A′ as being A1∪Anc for some non-empty set of non-

onflicting actions Anc. For pruning to result in a solution not being

ound, where it would otherwise be found, it must be the case that A′
s a solution for C1 w.r.t. S0, otherwise the condition in line 19 is false,

nd the algorithm does not continue to explore from Sa
1
. We also must

ave that there exists A2−n which is a solution for the remaining con-

traints w.r.t. Sa
1

(and it must also keep C1 true). This is illustrated in

he figure below.

S0
A1−→ S1 � C1

′ = A1 ∪ Anc ↓ ↓ A2−n ∪ Anc

Sa
1 −→

A2−n

Sa
2 � C1 . . .Cn

Now, consider applying A2−n ∪ Anc to S1 (right-side vertical arrow

n the figure). The accumulated action set applied to S0 is A1 (yield-

ng S1) and then A2−n ∪ Anc, i.e. A1 ∪ A2−n ∪ Anc. But this is exactly the

ame as the action set applied on the pruned path (i.e. A1∪Anc and

hen A2−n), so we have constructed an alternative path to Sa
2

via S1,

ather than via Sa
1
. We only need to show that A2−n ∪ Anc, or a non-

edundant subset of it, will be found as a solution for C2 . . .Cn w.r.t

1. We do this by applying Theorem 2 (possibly repeatedly, working

ackward). Note that if there is a non-redundant subset of A2−n ∪ Anc,

hen we need to argue that it is preferred to A2−n ∪ Anc. We observe

hat if any of the actions omitted from the non-redundant subset are

onflicting actions, then the search process will extend the solution

y adding them back in at the end of the search process (lines 9–

6). We then focus on non-conflicting actions where, by definition of

, the non-redundant subset is preferred to the redundant solution

1 ∪ A2−n ∪ Anc.

We now turn to applying conflicting actions (lines 9–16). Since

his is only applied at the end of a search (when a goal state is

eached) it does not reduce the search space, but rather, takes a solu-

ion and extends it by considering whether further conflicting actions

an be added to it. This can potentially yield a more preferred solu-

ion, and so when a solution that has just been found is marked as

eing dominated (line 15) it is exactly in the situation where a more

referred solution has just been found, and marked as a goal state (in

ine 14). Similarly, we observe that line 16, which applies when a goal



150 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

0

5

10

15

20

25

30

100 1000 10000 100000

N
um

be
r
of

ch
an

ge
s
on

av
er
ag
e

Code size (i.e. number of classes)

(a) Java projects

0

10

20

30

40

50

60

100 120 140 160 180 200 220 240

N
um

be
ro

fc
ha

ng
es

on
th
e
99

th
pe

rc
en

�
le

Model size (i.e. number of model elements)

(b) UML models

Fig. 12. The number of changes N between two versions of open-source software

projects.

t

t

(

p

t

c

G

(

c

b

T

c

O

a

i

a

r

c

e

t

T

T

o

t

a

t

v

c

s

o

s

d

l

A

i

w

a

a

c

W

i

t

v

W

3

t

i

c

i

T

t

n

(

e

l

m

c

11 The models are Microwave Oven (with 290 model elements and 92 constraint

instances), iTalks (2212 model elements, 1587 constraint instances), Insurance Net-

work Fees (16,255 model elements, 7482 constraint instances), and 〈unnamed〉 (33,347

model elements, 13,504 constraint instances).
12 Name redacted for commercial reasons.
state has been found, only prunes out less preferred potential con-

flicting action sets, and hence meets the completeness condition. �

6.2. Scalability

The key question is to what extent the computational complexity

of the search algorithm scales with the size of the model. The worst-

case complexity of the search algorithm is O(BD) where B is the av-

erage branching factor (the maximum number of successors from a

state), and D is the maximum depth of the search tree. The branching

factor B is the number of combinations from the available actions (de-

rived from the available action set �), which in the worst case is 2N

(number of k-combinations for all k) where N is the number of actions

in � (i.e. the size of �). The worse-case depth of the tree is the num-

ber of non-persistent inconsistencies (I) plus the number of inconsis-

tencies that are introduced by the repair process (R, for “ripple”), thus

D = I + R. While exponential growth poses serious theoretical threats

to our algorithm, we will show, using empirical evidence, that in prac-

tice both B and D are very small and more importantly do not increase

with the model size. Firstly, we have shown in Egyed (2006), based

on an empirical study of 29 UML models (26 of them were third-

party models) ranging from small models to very large ones (with

hundreds of thousands of model elements), that each (single) change

affects a fixed (on average 10) number of constraints. Therefore, the

number of inconsistencies I in the initial merged model is propor-

tional to the number of changes N rather than to the size of the model,

i.e. I = O(N). Secondly, we know from Groher and Egyed (2010) that

the ripple effect R in practice is limited to 4 constraint instances and

stays constant with the model size. Consequently, D = O(N + 4), i.e.

D is proportional to the number of changes N in the available action

set �.

We thus empirically measured the number of changes in the UML

design models of 7 open-source systems (e.g. UseCaseReservation,

AnneeEtude, Seance, Services, Formation, UE, Semestre). For each

system, we iterated over its version control history to compute N.

We found that 99% of all commits involved changes to fewer than 52

model elements (see Fig. 12(b)). In addition, Fig. 12(b) also shows that
he number of changes does not increase with the model size. Since

he size of the models we studied was however comparatively small

due to very limited availability of versioned models in open source

rojects), we performed a similar study on 10 open-source Java sys-

ems, which ranged from small to large scale with up to 10,000

lasses, e.g. JHotDraw, Log4J, XStream, JDownloader, Psm, Joda_time,

wt, Tvbrowser, Ant_main, and JEdit. We found that roughly 5 classes

except for the case of the XStream project which has on average 25

lasses) were committed on average, but most importantly the num-

er of changes N did not increase with the system size (see Fig. 12(a)).

herefore, evidences from both of the studies on UML models and

ode suggested that both B = O(2N) (the exponential base) and D =
(N) (the exponential factor) are also constant. Since both B and D

re constant, the practical computational complexity of our approach

s constant with model size.

In order to complement the theoretical scalability discussion

bove with a practical empirical assessment of the approach, we have

un our tool against four industrial UML models11 (all of which have

lass, sequence and state diagrams) ranging from small (290 model

lements) to large models (33,357 model elements) using 18 consis-

ency constraints (producing from 92 to 13,504 constraint instances).

he models are part of the model collections used in Egyed (2011).

he evaluations were done using our implementation for the IBM RSA

n an Intel Core 2 Quad CPU @2.83 GHz with 8 GB (4 GB available for

he RSA) RAM and 64bit Linux (3.1.9). Since we did not have avail-

ble large UML models with multiple versions and different diagram

ypes, for the purpose of a scalability assessment, we have created the

ersions of each UML model by randomly introducing percentages of

hanges relative to the size of the model (because we want to as-

ess our algorithm’s performance relative to the number/percentage

f changes in addition to model size). This is a worst case assessment

ince we already know that commit sizes are comparatively small and

o not increase with the size of the model.

For each of the four selected UML models, we have done the fol-

owing. First, we generated a set of random changes from the model.

lthough our algorithm can handle conflicting changes, in this exper-

ment we assumed that the changes are orthogonal since our focus

as on assessing scalability with respect to the number of changes

nd the model size. Specifically, since conflicting changes are applied

t the end of a search, when a goal state is found, the existence of

onflicting changes does not affect the “shape” of the search space.

e then applied the set of random changes to the model, yielding an

nitial merged model which was input to our tool. For each action in

he set of changes, we obtained its reverse action. The set of all re-

erse actions form the available action set that was input to our tool.

e have also tested our approach with different sizes of �, i.e. from

up to 1650 change actions. We then measured the time our tool

ook for finding all possible solutions for resolving all non-persistent

nconsistencies found in the initial merged model.

The results again show very clearly that the time taken does not in-

rease as the model size increases (e.g. it took only 7 ms for 325 changes

n the Insurance Network Fees model with 16,255 model elements).

he results also show, as we expected, that the time taken grows with

he number of changes (relative to the model size) seeded and the

umber of non-persistent inconsistencies in the initial merged model

see Figs. 13 and 14; both graphs are in the logarithmic scale). How-

ver, it does demonstrate that our approach scales quite well to both a

arge percentage of changes (e.g. 40% changes in the Microwave Oven

odel took only 26 ms) and the number of inconsistencies (e.g. 5%

hanges causing 60 inconsistencies in the biggest12 〈unnamed〉 model



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 151

1

10

100

1000

1 10 100 1000 10000

T
im

e
 (

m
s
)

Number of changes (i.e. the size of the available action set Θ)

M=290

M=2212

M=16255

M=33347

Fig. 13. Computation time for different models and changes (original algorithm). Both X-axis and Y-axis are in the logarithmic scale.

1000

100

m
s
)

M=290

T
im

e
 (

m

M=2212

M=16255

10 M=33347

1

001011

Number of inconsistencies

Fig. 14. Computation time for different models and inconsistencies (original algorithm). Both X-axis and Y-axis are in the logarithmic scale.

o

a

c

T

e

g

s

(

a

p

i

m

t

m

n

w

t

a

p

s

n

t

m

t

l

f

w

w

6

fi

r

c

c

m

p

i

m

f 33,347 model elements took less than 0.3 s). More importantly, our

pproach performs very well (i.e. took 15 ms or less) in 99% of all

lassical merging situations where there are fewer than 52 changes.

his observation suggests that our approach is able to merge mod-

ls even with larger differences (1000+ changes). Since models rarely

o through dramatic changes, this implies that our approach should

cale to nearly all merging scenarios—all but the most extreme cases

e.g., a larger refactoring), which are rare.

We have also conducted the same experiments with the modified

lgorithm which uses the repair generation. Fig. 15 shows the com-

uting time for all four models against the number of change actions

n � (noting that both graphs in Figs. 15 and 16 are in the logarith-

ic scale). The first observation in this result is that the computing

ime increases with the number of change actions in � across all four

odels. Our approach can scale to very large models and to very large

umbers of changes in the model versions to be merged. For example,

ith the model of 33,347 elements and 1650 changes to be merged, it

ook our tool less than 17 s to find all 9 possible solutions for resolving

ll 71 inconsistencies in the initial merged model.

Fig. 16 shows the computing time against the number of non-

ersistent inconsistencies in the initial merged model. As can be
een, our approach can quickly find solutions to resolve a large

umber of inconsistencies: it took less than 9 s to find all six solu-

ions which resolve all 100 inconsistencies in the model with 16,255

odel elements. We note that the larger the number of solutions,

he longer it takes to find all of them. For example, in the case of the

argest model with 33,347 model elements, there were 65 solutions

or fixing one inconsistency, which took 532 ms to find them all,

hereas there were only 11 solutions for fixing two inconsistencies,

hich took 55 ms.

.3. Memory consumption

Although our algorithm involves looking ahead, it follows a depth-

rst-search manner and thus memory use is efficient (i.e. linear with

espect to the search domain). In addition, we do not store multiple

opies of the model in the look ahead. When we want to explore if a

hange action leads to a solution, we apply the action to the current

odel, and when we continue to explore an alternative action, the

revious action is reversed. In other words, the application of actions

s done in a simulated mode, and is undone later in the backtracking

ode (not shown in the algorithm), therefore only one copy of the



152 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

1

10

100

1000

10000

100000

1 10 100 1000 10000

T
im

e
 (

m
s
)

Number of changes (i.e. the size of the available action set Θ)

M=290

M=2212

M=16255

M=33347

Fig. 15. Computation time for different models and changes (modified algorithm with repair generation). Both X-axis and Y-axis are in the logarithmic scale .

1

10

100

1000

10000

100000

100101

T
im

e
 (

m
s
)

Number of inconsistencies

M=290

M=2212

M=16255

M=33347

Fig. 16. Computation time for different models and inconsistencies (modified algorithm with repair generation). Both X-axis and Y-axis are in the logarithmic scale.

v

r

o

7

d

e

o

a

f

l

t

t

l

c

2

model is needed. This technique minimizes the memory usage of our

approach and keeps it linear to the depth of the search tree.

6.4. Threats to validity

Our empirical study was performed in the context of four third-

party models with vastly different sizes and domains. We have also

seeded our evaluation with different numbers of changes between

model versions, e.g. from a very small number of 3 changes up to

1665 changes, and with different percentage of changes relative to

the model size, e.g. from 0.1% to 40%. However, we acknowledge that

those changes which were used to create the model versions were not

real changes. We however expect that real versioned changes would

give a similar result since our evaluation has covered a wide range of

realistic numbers of changes and number of inconsistencies caused

by them. A threat to external validity, however, is that we did not yet

assess the effectiveness and usability of our approach by monitoring

and interviewing software engineers that used our tool. Future in-
estigation would evaluate how difficult it is for users to manually

esolve inconsistencies that arise during merging compared to using

ur tool.

. Related work

There have been a range of techniques and tools proposed for

ifferencing and merging models. For example, the work in Chen

t al. (2004) focuses on identifying the changes between versions

f a product line architecture and merging those changes to create

consolidated version. The approach in Abi-Antoun et al. (2006) is

or differencing and merging generic architectural models that fol-

ow the traditional component-and-connector (C&C) view. However,

hey only address structural models and do not deal with inconsis-

encies during the merging process. Those techniques are part of the

arge literature on model versioning, which has recently attracted in-

reasing interest from both academia and industry (see Brosch et al.,

012b for a recent survey and the online bibliography compiling an



H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 153

e

C

p

m

c

2

s

a

t

c

r

v

m

r

b

t

o

S

a

p

a

a

c

u

g

b

(

t

b

f

r

b

a

n

r

w

2

b

T

i

R

t

w

o

a

i

i

t

f

i

t

c

w

2

i

t

a

i

a

B

i

i

c

m

f

(

p

e

p

w

e

m

t

R

t

r

p

i

R

w

t

w

d

c

2

p

2

g

p

t

n

c

c

c

h

c

2

m

a

a

l

a

p

i

r

m

F

t

d

e

f

p

2

i

i

a

C

s

c

f

a

c

b

t

p

t

i

f

xtensive list of relevant publications in this field, Bibliography on

omparison and Versioning of Software Models, 2014). The most im-

ortant challenges in this field are identifying the changes between

odel versions (model differencing) and merging those changes to

reate a consolidated version (model merging) (Rubin and Chechik,

013). Model differencing techniques are typically classified into

tate-based approaches and change-based approaches. State-based

pproaches (e.g. Xing and Stroulia, 2005) calculate the changes be-

ween model versions by matching and difference algorithms, while

hange-based approaches (e.g. Herrmannsdoerfer and Koegel, 2010)

ecord the changes directly in the modeling tool. Some of those ad-

anced techniques (e.g. Xing and Stroulia, 2005) can even identify

odel differences based on name and structure similarity and do not

ely on the assumption of UUID preservation. In addition, there have

een several approaches (e.g. Gils, 2002; Maoz et al., 2011a; 2011b)

o model matching and differencing which consider the semantics

f the models (instead of only the concrete or the abstract syntax).

emantic differencing is just another dimension; both state-based

nd operation-based can be used for semantic differencing. Our ap-

roach is able to utilize either technique to compute the available

ction set.

Most model merging techniques focus on dealing with conflicts

nd are classified into two major approaches. The first approach is

ompletely shifting the responsibility of resolving conflicts to the

sers (e.g. IBM RSA, IBM, 2013 or EMF Compare, Eclipse, 2013a) or

uiding the user through the resolution process and suggesting possi-

le resolution strategies (e.g. Gerth et al., 2013). The second approach

e.g. Cicchetti et al., 2008) attempts to automate the conflict resolu-

ion process by defining merge policies (e.g. stating which side should

e preferred in the merge process). In some cases, it is not necessary

or software engineers to resolve merge conflicts immediately. The

ecent work in Wieland et al. (2013) supports deferring the resolution

y annotating conflicts. This prompts the involved parties to discuss

nd agree on a consolidate decision. Our approach also supports this

otion of conflict tolerance by accommodating conflicts in our explo-

ation for possible merging options. However, there has been little

ork on dealing with inconsistencies in model merging (Brosch et al.,

012b), and most of them (e.g. Bartelt, 2008; Brosch et al., 2012a; Sa-

etzadeh et al., 2010; Taentzer et al., 2010; Westfechtel, 2010 or the

ReMer+ framework, Sabetzadeh et al., 2008, 2007) only deal with

dentifying inconsistencies in the merged version, not resolving them.

ecently, Taentzer et al. (2012) has attempted to address the resolu-

ion of inconsistencies (referred to as state-based conflicts in their

ork) in model merging. However, their work is limited to providing

nly a highly abstract repair model based on graph modifications and

few examples of repair actions. The recent Eclipse’s EMF Diff/Merge

ncubation project (Eclipse, 2013b), aims to provide consistent merg-

ng versions of an EMF model. Their approach is not described in de-

ail but seems to incrementally build the consistent merged model

rom the differences (instead of having an initial merged model as

n our approach) by computing the minimal superset of differences

hat must be merged to preserve consistency. Persistent inconsisten-

ies, if existing, would cause a problem in their approach since they

ould invalidate any possible merge. The recent work (Dam et al.,

014) describes our initial attempt to address inconsistencies arisen

n merging architectural model using a repair generator for inconsis-

encies. This paper examines the issues in a more thorough manner

nd proposes a different approach using search-based techniques.

Recent research has also started to explore continuous merging to

dentify and help resolve conflicts early when changes to source code

re made concurrently by different developers. Some approaches (e.g.

run et al., 2013; Guimarães and Silva, 2012) create a shadow repos-

tory and continuously merge uncommitted and committed changes

n the background which is then compiled and tested to detect merge

onflicts. Other approaches (e.g. Kasi and Sarma, 2013) focus on deter-

ining conflicting tasks and schedule them to recommend conflict-
ree development paths. Collaborative development environments

e.g. the CoDesign framework, Bang et al., 2010) have also been pro-

osed to allow developers to work in a shared environment, which

nables conflict detection in real time. Although those approaches

rovide valuable solutions to deal with conflicts in collaborative soft-

are engineering, it should be noted that conflicts cannot be entirely

liminated in practice. Developers sometimes need to work offline or

ay not able to work in a co-design manner, or sometimes they want

o make a certain amount of changes before considering merging.

ecent research (e.g. Goeminne and Mens, 2013) has also explored

o determine which identities in a collaborative development envi-

onment (e.g. open source software repositories) represent the same

hysical person and how to merge these identities.

There has been a range of recent work on resolving inconsistencies

n models. Some of them, including our prior work (e.g. Egyed, 2007;

eder and Egyed, 2012), only considered fixing single inconsistencies,

hereas our work in this paper considers fixing a number of inconsis-

encies at the same time using information in model versions. Other

ork also aims to automate inconsistency resolution by having pre-

efined resolution rules (e.g. Liu et al., 2002) or identifying specific

hange propagation rules for all types of changes (e.g. Briand et al.,

006). Such rules can be formally defined following a logic-based ap-

roach (e.g. Liu et al., 2002 used Java Rule Engine JESS, or Mens et al.,

005 used Description Logic, or a graph-based approach such as the

raph transformations used in Mens et al., 2006). However, these ap-

roaches suffer from the correctness and completeness issue since

he rules are developed manually by the user. As a result, there is

o guarantee that these rules are complete (i.e. that there are no in-

onsistency resolutions other than those defined by the rules) and

orrect (i.e. any of the resolutions can actually fix a corresponding in-

onsistency). In addition, a significant effort is required to manually

ardcode such rules when the number of consistency constraints in-

reases or changes. Our other earlier work (Dam and Winikoff, 2010,

011, 2008) considers multiple constraints and supports the auto-

ated generation of repairs but does not scale well to large models,

s opposed to the approach presented in this paper. Some existing

pproaches (e.g. da Silva et al., 2010) address this scalability issue by

imiting the depth of the search tree, thus sacrificing the ability to fix

ll inconsistencies. Such approaches can only generate abstract re-

airs and let the user work out the concrete repair actions. Our work

n this paper tackles this issue by automatically generating concrete

epairs from a set of available actions. Maintaining consistency across

odels developed in different languages has also attracted attention.

or example, the work in Eramo et al. (2012) proposes an approach

o propagate changes across models written in different architectural

escription languages. Leveraging such an approach for merging het-

rogenous models (i.e. different metamodels) would be part of our

uture study.

Exploring consistent states of a model also resembles a planning

roblem, and it can be viewed as such (as in Dam and Winikoff,

011 or Pinna Puissant et al., 2015) although a planner with prun-

ng and loop detection is needed to deal with a large, potentially

nfinite, search space. The current problem could be formulated as

Constraint Satisfaction Problem (Hentenryck and Saraswat, 1996).

SPs address the combinatorial problem in which given a set of con-

traints among variables and a set of (domain) values the variables

an take, what choices best satisfy these constraints. However, the

ormulating process of mapping UML concepts (e.g. classes, associ-

tions, attributes, etc.) to CSP’s variables and their domain values is

omplicated and challenging, especially maintaining the traceability

etween the original UML model and its corresponding CSP. In addi-

ion, since the entire UML model may need to be converted, this ap-

roach likely will not scale well. Furthermore, while a CSP constraint

ypically identifies the variables explicitly, an OCL constraint does not

dentify variables directly but instead gives navigation instructions

or the UML model.



154 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

A

(

s

R

p

R

A

B

B

B

B

B

B

B

B

B

C

C

D

D

D

D

E

E

E

E

E

E

F

Finally, our proposal of exploring model merging alternatives to

compute the best merging solutions is related to search-based soft-

ware engineering (Harman, 2007). A recent work (Kessentini et al.,

2013) in this domain has applied genetic algorithm (Koza, 1992) to

search for the optimal merging sequence that maximizes the num-

ber of successfully applied changes (including conflicting changes)

in model merging. However, their work does not consider inconsis-

tency issues and is limited to merging structural models (e.g. class

diagrams), which is more suitable to changes driven by model refac-

toring.

8. Conclusions and future work

This paper presented a novel approach for resolving syntactical

and semantic inconsistencies in the merging of model versions. Our

approach focuses on not only dealing with conflicts, which most ex-

isting work focuses on, but also detecting and avoiding syntactic and

semantic inconsistencies arising in the merging process. We have

proposed a search-based technique, which systematically explores

model merging alternatives to compute the best merging solutions

in terms of preserving consistency and integrating as much informa-

tion in the models to be merged as possible. Our approach is able

to find all possible solutions, which resolve all non-persistent incon-

sistencies introduced, by merging different versions of an model. Our

approach also provides guidance for resolving persistent inconsisten-

cies, which pre-exist in the model, in terms of telling the software en-

gineers exactly which model elements should be changed to resolve

them. Preprocessing can be applied to detect persistent and non-

persistent inconsistencies. Our approach however does not force the

designers to resolve all inconsistencies in the models before they can

be merged. In fact, we allow inconsistent models to be merged, fol-

lowing the principle of tolerating inconsistencies (Balzer, 1991). We

have demonstrated through a number of empirical studies that our

approach is scalable and not affected by the model size. More impor-

tantly, our approach scales very well to large numbers of changes in

the versions to be merged, indicating its usefulness and efficiency in

situations like merging branches where the difference between ver-

sions tends to be large.

Future work would involve investigating how different consistent

merged models can be presented to the user in a user-friendly man-

ner, and exploring how our approach can be applied to other areas

related to model merging. Future work would also involve evaluating

our approach with real versions of UML models when they become

available to us. We have not evaluated our approach and tool with

human users to fully assess its effectiveness and usability, which is

also part of our future work. In addition, an interesting topic for fu-

ture work is to apply our approach to merging between design mod-

els and source code (e.g. UML diagrams and Java code). In a broad

sense, all of the software artifacts (including source code and design)

are part of a model describing the software system. Each part rep-

resents a view of the model and the semantic understanding of one

part of the model can arise from other parts of the model. For exam-

ple, the meaning of a piece of code involving the interaction between

a number of objects can be interpreted in terms of a UML sequence

diagram. Hence, our approach can be extended to support merging

design and source code provided that semantic constraints that link

and extract semantics of different parts of a system can be estab-

lished. Our future work would also investigate whether it is possible

that modification patterns of code and of UML models are similar. Fi-

nally, our approach could also be extended to support selective undo-

ing of changes in a model where the designer decides which model

elements to undo and our approach automatically suggests related

changes that should also be rolled back. In this context, our approach

could be used to explore what the other model changes are needed

to preserve consistency and this study is thus also part of our future

work.
cknowledgments

Hoa Khanh Dam would like to thank Johannes Kepler University

JKU) for granting him a Visiting Research Fellowship Grant which

upported his visit at JKU. Alexander Egyed, Alexander Reder, and

oberto E. Lopez-Herrejon acknowledge that this work was sup-

orted by the Austrian Science Fund (FWF): P 25289-N15.

eferences

bi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D., 2006. Differencing and

merging of architectural views. In: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, Washing-

ton, DC, USA, pp. 47–58.
alzer, R., 1991. Tolerating inconsistency. In: Proceedings of the 13th International

Conference on Software Engineering (ICSE’91). IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 158–165.

ang, J.Y., Popescu, D., Edwards, G., Medvidovic, N., Kulkarni, N., Rama, G.M.,

Padmanabhuni, S., 2010. Codesign: a highly extensible collaborative software mod-
eling framework. In: Proceedings of the 32Nd ACM/IEEE International Conference

on Software Engineering, vol. 2. ACM, New York, NY, USA, pp. 243–246.
artelt, C., 2008. Consistency preserving model merge in collaborative development

processes. In: Proceedings of the 2008 ICSE Workshop on Comparison and Ver-
sioning of Software Models. ACM, New York, NY, USA, pp. 13–18.

ibliography on Comparison and Versioning of Software Models, 2014.

http://pi.informatik.uni-siegen.de/CVSM/ (accessed 21 March 2014).
lanc, X., Mounier, I., Mougenot, A., Mens, T., 2008. Detecting model inconsis-

tency through operation-based model construction. In: Schäfer, W., Dwyer, M.B.,
Gruhn, V. (Eds.), ICSE. ACM, pp. 511–520.

riand, L.C., Labiche, Y., O’Sullivan, L., Sowka, M.M., 2006. Automated
impact analysis of UML models. J. Syst. Softw. 79 (3), 339–352.

http://dx.doi.org/10.1016/j.jss.2005.05.001.
rosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M.,

Wimmer, M., 2012a. Towards semantics-aware merge support in optimistic model

versioning. In: Models in Software Engineering - Workshops and Symposia at
MODELS 2011, Wellington, New Zealand, October 16–21, 2011, Reports and Revised

Selected Papers. Springer-Verlag, Berlin/Heidelberg, pp. 246–256.
rosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M., 2012b. An intro-

duction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (Eds.),
Formal Methods for Model-Driven Engineering. Lecture Notes in Computer Sci-

ence, vol. 7320. Springer, pp. 336–398. (Eingeladen; Vortrag: International School

on Formal Methods for the Design of Computer, Communication, and Software Sys-
tems, Bertinoro, Italy. 2012-06-18-2012-06-23.

run, Y., Holmes, R., Ernst, M.D., Notkin, D., 2013. Early detection of collaboration con-
flicts and risks. IEEE Trans. Softw. Eng. 39 (10), 1358–1375.

hen, P., Critchlow, M., Garg, A., Westhuizen, C., Hoek, A., 2004. Differencing and
merging within an evolving product line architecture. In: Linden, F. (Ed.), Soft-

ware Product-Family Engineering. Lecture Notes in Computer Science, vol. 3014.

Springer, Berlin/Heidelberg, pp. 269–281.
icchetti, A., Ruscio, D., Pierantonio, A., 2008. Managing model conflicts in distributed

development. In: Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems. Springer-Verlag, Berlin/Heidelberg,

pp. 311–325.
am, H.K., Reder, A., Egyed, A., 2014. Inconsistency resolution in merging versions of

architectural models. In: Proceedings of the 11th IEEE/IFIP Conference on Software

Architecture. IEEE, Washington, DC, USA, pp. 153–162.
am, H.K., Winikoff, M., 2010. Supporting change propagation in UML models. In: Pro-

ceedings of the 26th IEEE International Conference on Software Maintenance. IEEE
Computer Society, Washington, DC, USA, pp. 1–10.

am, H.K., Winikoff, M., 2011. An agent-oriented approach to change propagation in
software maintenance. J. Autonomous Agents Multi-Agent Syst. 23 (3), 384–452.

doi:10.1007/s10458-010-9163-0.

am, K.H., Winikoff, M., 2008. Cost-based BDI plan selection for change propagation.
In: Padgham, L., Parkes, D.C., Mueller, J.P., Parsons, S. (Eds.), Proceedings of the

7th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’2008), Estoril, Portugal, pp. 217–224.

clipse, 2013a. EMF Compare. http://www.eclipse.org/emf/compare/ (accessed 11
March 2013).

clipse, 2013b. EMF Diff/Merge. http://www.eclipse.org/diffmerge/ (accessed 11 March

2013).
gyed, A., 2006. Instant consistency checking for the UML. In: Proceedings of the 28th

International Conference on Software Engineering, pp. 381–390.
gyed, A., 2007. Fixing inconsistencies in UML models. In: ICSE’07: Proceedings of the

29th International Conference on Software Engineering. IEEE Computer Society,
Washington, DC, USA, pp. 292–301.

gyed, A., 2011. Automatically detecting and tracking inconsistencies in software de-
sign models. IEEE Trans. Softw. Eng. 37 (2), 188–204.

ramo, R., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A., 2012. A model-

driven approach to automate the propagation of changes among architecture de-
scription languages.. Softw. Syst. Model. 11 (1), 29–53.

eiler, P.H., Gluch, D.P., Hudak, J.J., 2006. The architecture analysis & design lan-
guage (AADL): an introduction. Technical Report. Software Engineering Institute,

Carnegie Mellon University.

http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0004
http://pi.informatik.uni-siegen.de/CVSM/
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0005
http://dx.doi.org/10.1016/j.jss.2005.05.001
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0013
http://dx.doi.org/10.1007/s10458-010-9163-0
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0015
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/diffmerge/
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0020


H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155 155

G

G

G

G

G

H

H

H

I

I

K

K

K

L

L

M

M

M

M

M

M

O

P

R

R

R

S

S

S

d

T

T

W

W

X

H
T

S
v

E
m

g

A

J
s

U
s

E
o

n

M

i
m

P
p

Z

S

A
g

a
r

m

R

K
s

(
(

H

p
m

e

erth, C., Küster, J.M., Luckey, M., Engels, G., 2013. Detection and resolution of con-
flicting change operations in version management of process models. Softw. Syst.

Model. 12 (3), 517–535.
ils, B.v., 2002. Application of semantic matching in enterprise application integration.

Tilburg University, The Netherlands, EU.
oeminne, M., Mens, T., 2013. A comparison of identity merge algorithms for software

repositories. Sci. Comput. Program. 78 (8), 971–986.
roher, I., Egyed, A., 2010. Selective and consistent undoing of model changes. In: Pro-

ceedings of the 13th International Conference on Model Driven Engineering Lan-

guages and Systems. Springer-Verlag, Berlin, Heidelberg, pp. 123–137.
uimarães, M.L., Silva, A.R., 2012. Improving early detection of software merge con-

flicts. In: Proceedings of the 2012 International Conference on Software Engineer-
ing. IEEE Press, Piscataway, NJ, USA, pp. 342–352.

arman, M., 2007. The current state and future of search based software engineering.
In: 2007 Future of Software Engineering. IEEE Computer Society, Washington, DC,

USA, pp. 342–357. doi:10.1109/FOSE.2007.29.

entenryck, P.V., Saraswat, V., 1996. Strategic directions in constraint programming.
ACM Comput. Surv. 28 (4), 701–726. http://doi.acm.org/10.1145/242223.242279

errmannsdoerfer, M., Koegel, M., 2010. Towards a generic operation recorder for
model evolution. In: Proceedings of the 1st International Workshop on Model

Comparison in Practice. ACM, New York, NY, USA, pp. 76–81.
BM, 2013. IBM Rational Software Architect. http://www.ibm.com/software/rational/

products/swarchitect/ (accessed 11 March 2013).

vers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O., 2004. Documenting
component and connector views with UML 2.0. Technical Report. Software Engi-

neering Institute (Carnegie Mellon University).
asi, B.K., Sarma, A., 2013. Cassandra: Proactive conflict minimization through opti-

mized task scheduling. In: Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, Piscataway, NJ, USA, pp. 732–741.

essentini, M., Werda, W., Langer, P., Wimmer, M., 2013. Search-based model merging.

In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary
Computation Conference. ACM, New York, NY, USA, pp. 1453–1460.

oza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA.

allchandani, J.T., Mall, R., 2011. A dynamic slicing technique for UML architectural
models. IEEE Trans. Softw. Eng. 37 (6), 737–771.

iu, W., Easterbrook, S., Mylopoulos, J., 2002. Rule based detection of inconsistency

in UML models. In: Kuzniarz, L., Reggio, G., Sourrouille, J.L., Huzar, Z. (Eds.), UML
2002, Model Engineering, Concepts and Tools. Workshop on Consistency Problems

in UML-based Software Development. Department of Software Engineering and
Computer Science, Blekinge Institute of Technology, Ronneby, pp. 106–123.

alavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A., 2013. What industry needs
from architectural languages: A survey. IEEE Trans. Softw. Eng. 39 (6), 869–891.

aoz, S., Ringert, J.O., Rumpe, B., 2011a. ADDiff: semantic differencing for activity di-

agrams. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-
ropean Conference on Foundations of Software Engineering. ACM, New York, NY,

USA, pp. 179–189. doi:10.1145/2025113.2025140.
aoz, S., Ringert, J.O., Rumpe, B., 2011b. CDDiff: semantic differencing for class dia-

grams. In: Proceedings of the 25th European Conference on Object-Oriented Pro-
gramming. Springer-Verlag, Berlin/Heidelberg, pp. 230–254.

ens, T., 2002. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28 (5), 449–462.

ens, T., Van Der Straeten, R., D’Hondt, M., 2006. Detecting and resolving model incon-

sistencies using transformation dependency analysis. In: Proceedings of the 9th
International Conference on Model Driven Engineering Languages and Systems.

Springer-Verlag, Berlin/Heidelberg, pp. 200–214.
ens, T., Van Der Straeten, R., Simmonds, J., 2005. A framework for managing consis-

tency of evolving UML models. In: Yang, H. (Ed.), Software Evolution with UML and
XML. Idea Group Publishing, pp. 1–31.

bject Management Group, 2004. UML 2.0 Superstructure and Infrastructure Specifi-

cations. http://www.omg.org/technology/uml/.
inna Puissant, J., Van Der Straeten, R., Mens, T., 2015. Resolving model inconsistencies

using automated regression planning. Softw. Syst. Model. 14 (1), 461–481.
eder, A., Egyed, A., 2010. Model/Analyzer: a tool for detecting, visualizing and fixing

design errors in UML. In: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. ACM, New York, NY, USA, pp. 347–348.

eder, A., Egyed, A., 2012. Computing repair trees for resolving inconsistencies in de-

sign models. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ACM, New York, NY, USA, pp. 220–229.

ubin, J., Chechik, M., 2013. N-way model merging. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, USA,

pp. 301–311.
abetzadeh, M., Nejati, S., Chechik, M., Easterbrook, S., 2010. Reasoning about consis-
tency in model merging. In: Egyed, A., Lopez-Herrejon, R., Nuseibeh, B., Botter-

weck, G., Chechik, M., Hu, Z. (Eds.). 3rd Workshop on Living With Inconsistency in
Software Development. CEUR Workshop Proceedings.

abetzadeh, M., Nejati, S., Easterbrook, S., Chećhik, M., 2008. Global consistency
checking of distributed models with TReMer+. In: Proceedings of the 30th

International Conference on Software Engineering. ACM, New York, NY, USA,
pp. 815–818.

abetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M., 2007. Consistency

checking of conceptual models via model merging. In: Proceedings of the 15th IEEE
International Requirements Engineering Conference, pp. 221–230.

a Silva, M.A.A., Mougenot, A., Blanc, X., Bendraou, R., 2010. Towards automated in-
consistency handling in design models. In: Proceedings of the 22nd interna-

tional conference on Advanced Information Systems Engineering. Springer-Verlag,
Berlin/Heidelberg, pp. 348–362.

aentzer, G., Ermel, C., Langer, P., Wimmer, M., 2010. Conflict detection for model ver-

sioning based on graph modifications. In: Proceedings of the 5th International Con-
ference on Graph Transformations. Springer-Verlag, Berlin/Heidelberg, pp. 171–

186.
aentzer, G., Ermel, C., Langer, P., Wimmer, M., 2012. A fundamental approach to model

versioning based on graph modifications: from theory to implementation. Softw.
Syst. Model. 1–33. doi:10.1007/s10270-012-0248-x.

estfechtel, B., 2010. A formal approach to three-way merging of emf models. In: Pro-

ceedings of the 1st International Workshop on Model Comparison in Practice. ACM,
New York, NY, USA, pp. 31–41. doi:10.1145/1826147.1826155.

ieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G., 2013. Turning conflicts into
collaboration. Comput. Support. Coop. Work 22 (2–3), 181–240.

ing, Z., Stroulia, E., 2005. UMLDiff: an algorithm for object-oriented design differenc-
ing. In: Proceedings of the 20th IEEE/ACM International Conference on Automated

Software Engineering. ACM, New York, NY, USA, pp. 54–65.

oa Khanh Dam is a Senior Lecturer at the School of Computing and Information
echnology, University of Wollongong, Australia. He holds a Ph.D. degree in Computer

cience from RMIT University, Australia. His research has been published in the top
enues in AI/intelligent agents (AAMAS, JAAMAS), software engineering (ICSE, ICSM,

R, JSS), and service-oriented computing (ICSOC, SCC, BPM). His work has also won
ultiple Best Paper Awards (at WICSA, APCCM, and ASWEC) and ACM SIGSOFT Distin-

uished Paper Award (at MSR).

lexander Egyed is a Full Professor and Chair for Software-Intensive Systems at the

ohannes Kepler University, Austria. He received a Doctorate degree from the Univer-
ity of Southern California, USA. He was a post doc at the University College London,

K, and worked in industry for many years. He is most recognized for his work on
oftware/systems modeling particularly on variability, consistency, and traceability. Dr.

gyed has published over 160 refereed scientific books, journals, and conferences with
ver 4000 citations to date. He was recognized as a top 1% scholar by the ACM and

amed an IBM Research Faculty Fellow.

ichael Winikoff’s research interests concern notations for specifying and construct-

ng software. In particular, he is interested in agent-oriented software engineering
ethodologies and is co-author of the book Developing Intelligent Agent Systems: A

ractical Guide, published by John Wiley and Sons in 2004. Michael is head of the de-
artment of Information Science, at the University of Otago. Before moving to New

ealand he was a member of the agents group at RMIT university’s School of Computer

cience and IT.

lexander Reder received his master’s degree in software engineering and Ph.D. de-
ree in computer science from the Johannes Kepler University Linz in Austria, in 2009

nd 2013 respectively. He is now working at voestalpine group-IT GmbH, Austria. His
esearch interests include model driven engineering and consistency management in

odel based development.

oberto E. Lopez-Herrejon is currently a postdoctoral researcher at the Johannes

epler University in Linz Austria. He has been a Lise Meitner Fellow (2012–2014)
ponsored by the Austrian Science Fund (FWF), an Intra-European Marie Curie Fellow

2012–2014) sponsored by the European Union, and a Career Development Fellow
2005–2008) at the Software Engineering Centre of the University of Oxford, England.

e obtained his Ph.D. from The University of Texas at Austin in 2006, funded in

art by a Fulbright Fellowship. His expertise is software product lines, variability
anagement, feature oriented software development, and search-based software

ngineering.

http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0025
http://dx.doi.org/10.1109/FOSE.2007.29
http://doi.acm.org/10.1145/242223.242279
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0028
http://www.ibm.com/software/rational/products/swarchitect/
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0035
http://dx.doi.org/10.1145/2025113.2025140
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0040
http://www.omg.org/technology/uml/
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0049
http://dx.doi.org/10.1007/s10270-012-0248-x
http://dx.doi.org/10.1145/1826147.1826155
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00134-X/sbref0053

	Consistent merging of model versions
	1 Introduction
	2 Illustrative example
	3 Lifecycle of an inconsistency
	4 Architectural overview
	5 State space search formulation
	5.1 Incremental search space exploration
	5.2 Repair generation

	6 Evaluation
	6.1 Correctness
	6.2 Scalability
	6.3 Memory consumption
	6.4 Threats to validity

	7 Related work
	8 Conclusions and future work
	 Acknowledgments
	 References


